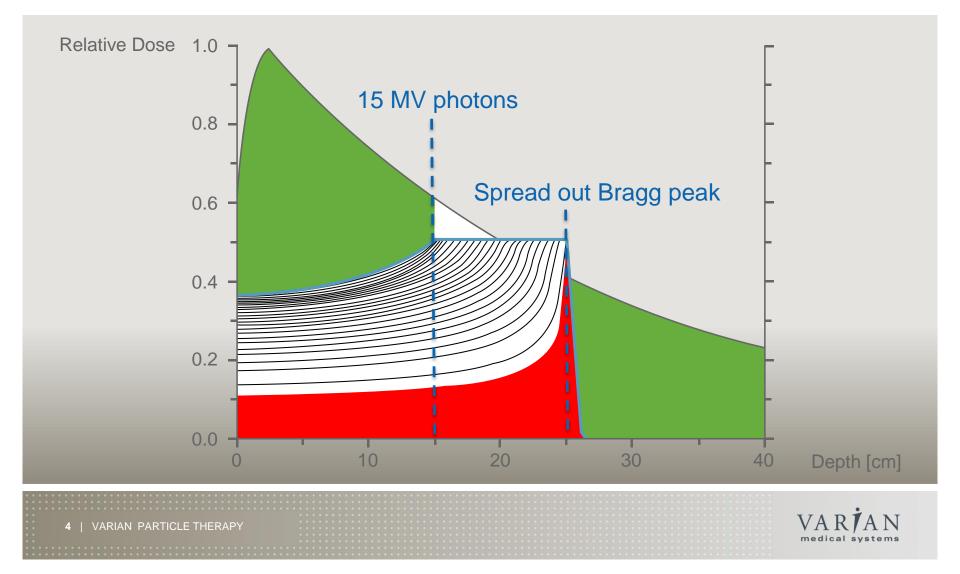
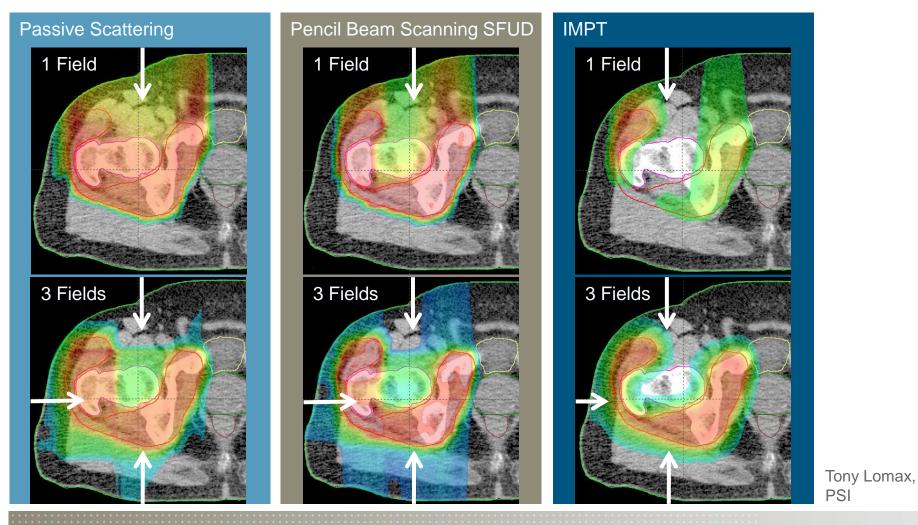
GLOBAL INDUSTRIAL DEVELOPMENT OF ACCELERATORS FOR CHARGED PARTICLE THERAPY

MICHAEL SCHILLO, VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH

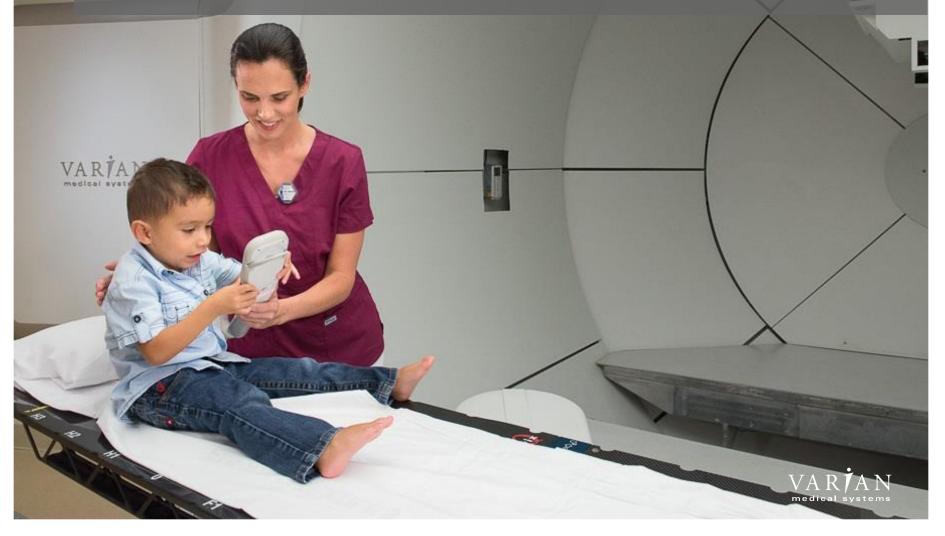
VARIAN PARTICLE THERAPY MICHAEL SCHILLO MANAGER ADVANCED DEVELOPMENT IPAC 14, DRESDEN 18.06.2014

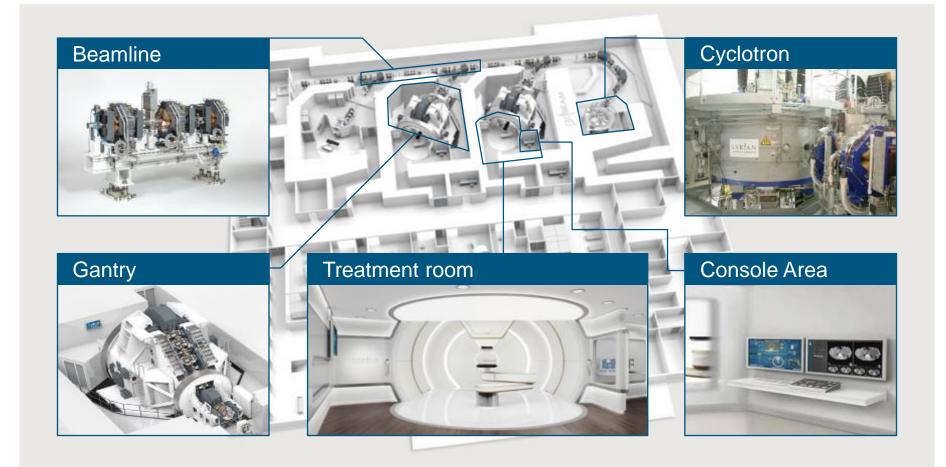
Hadron Therapy Accelerators Overview


- 1 | WHY HADRON THERAPY
- 2 | REQUIREMENTS & CONSTRAINS
- 3 | SOME EXAMPLES / ACCELERATORS IN USE
- 4 | OUTLOOK


WHY HADRON THERAPY

Why Hadron Therapy? Proton Bragg Peak allows highest dose conformity to tumor and lowest dose to healthy tissue


Beam Delivery – Proton Planning Comparison IMPT delivers best conformity

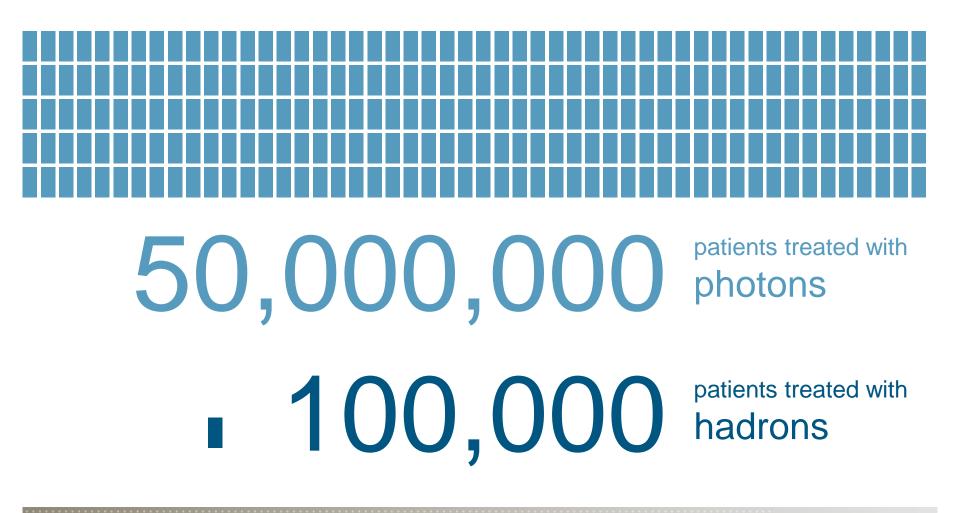

| VARIAN PARTICLE THERAPY

VAR**İ**AN medical systems

Proton therapy is used for a variety of cancer cases including head & neck, lung and pediatric.

Hadron Therapy Facility Much more than only the Accelerator

REQUIREMENTS & CONSTRAINS


Photons / Hadrons

Scattering / Scanning

Requirements

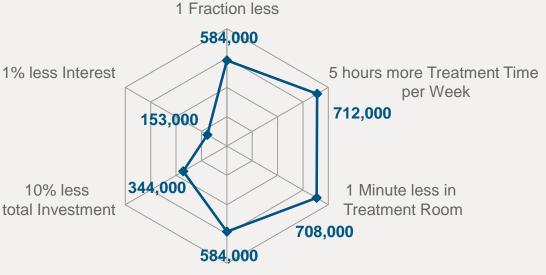
Hadron Market Patients Treated Worldwide

Proton Therapy Current State of Affairs

	PHOTONS	PROTON
PRICE	2 – 3.5 MUSD	20 – 35 MUSD
FOOTPRINT	100 m ²	200 – 400 m ²
COST PER TREATMENT*	400 Euro	1000 Euro
PATIENTS PER YEAR	2,500,000	12,000

* M. Goitein, M. Jermann, Clinical Oncology (2003) 15: S37-S50

Proton Therapy Business Model Financing


Different Financing for Public and Private Sector

Financeability for Private Project depends on:

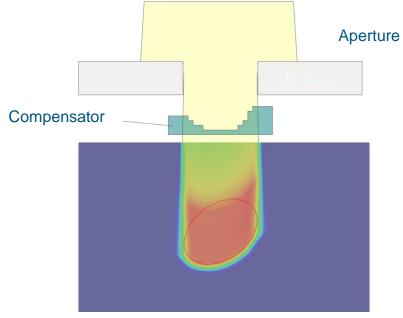
- Profitability shown by robust business model
- Low Risks

Simple Business Model:

- 3 year from start to first patient
- Single room
- 500 Patients per year

1000 € higher Reimbursement

Change of Earnings before Tax



11 | VARIAN PARTICLE THERAPY

Company confidential

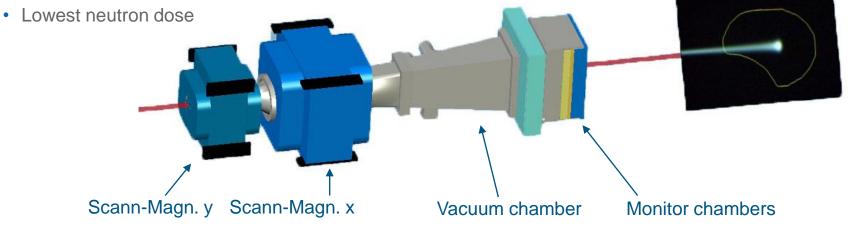
Beam Delivery – Scattering The Price – Patient specific hardware

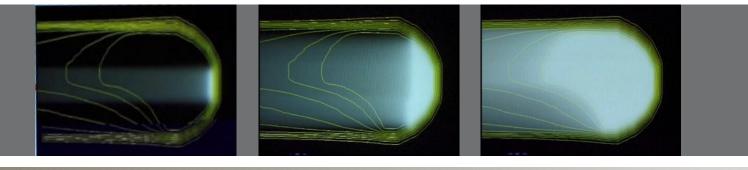
Transversally spread beam is created by scattering

A compensator is used to shape the proton beam to the distal edge of the target

For each field:

- Machining of patient specific aperture and range compensator
- Manual exchange of patient specific HW before irradaition





Beam Delivery – Scanning Higher patient throughput and higher treatment quality

Benefits

- Higher patient throughput No HW changes for fields
- IMPT higher treatment quality

Beam Delivery Varian ProBeam Scanning Nozzle - 2nd Generation IMPT

ProBeam[®] Scanning System

- 2nd Generation IMPT
- High Precision
- Optimized Dose Rate
- Eclipse Robustness Program
- >40,000 fractions delivered
- IMPT program 4 years clinical
- Focus on dedicated scanning nozzles

Proton Therapy High level Requirements

MEDICAL DEVICE INTERNATIONAL REGULATIONS AND STANDARDS

INVESTMENT:

- Low Cost of Equipment
 Accelerator Cost
- Low Cost of Transport Size and Weight

RETURN OF INVEST:

- Operation 16h per day/ 6d per Week Automation, Robustness
- Low Cost of Personnel
 Automation

- Fast ramp up ⇔ Robustness

VAR**J**AN medical systems

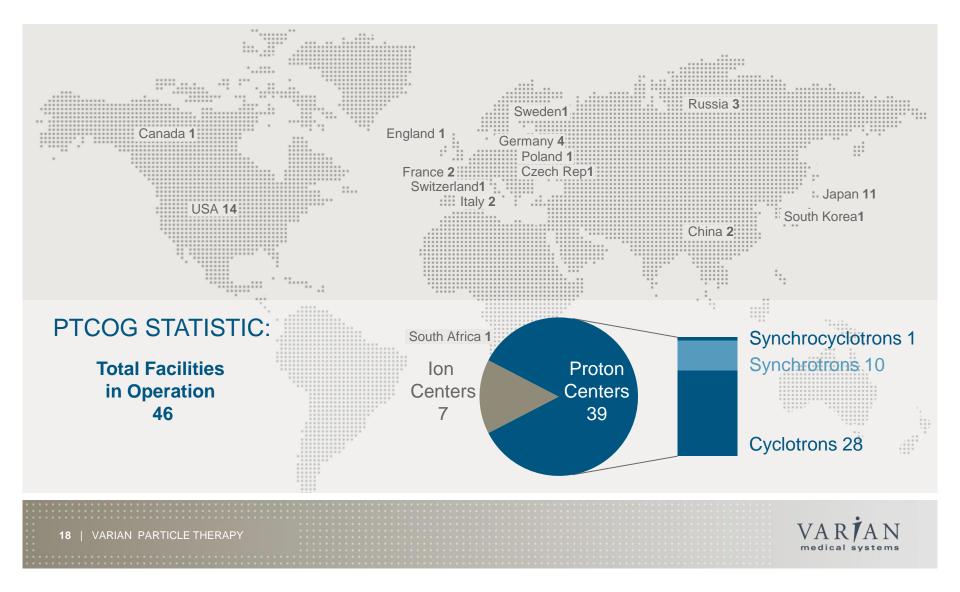
SOME EXAMPLES / ACCELERATORS IN USE

Accelerator Requirements

ProBeam superconducting Cyclotron

Other Accelerators in Use

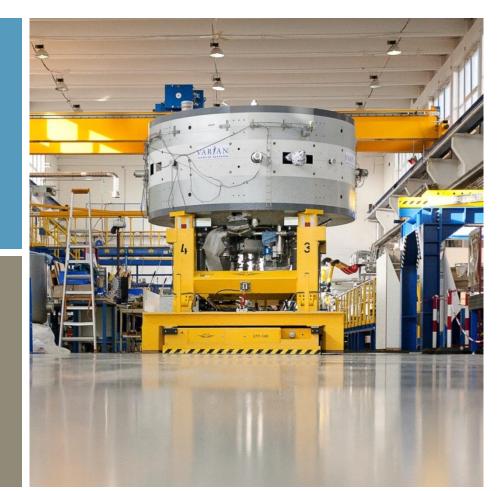
Hadron Accelerator "Ideal" Requirements for Proton Accelerator


REQUIREMENTS

Low Cost	
Small Footprint	
Automated Operation	16h/6d
Particle Range in Water	41 – 33 cm
Energy at Isocenter	70 – 230 MeV
Typical Current at Isocenter	~ 2nA or ~3.2x10 ¹⁰ protons per second
Current timestructure	CW
Duty Factor	near to 1
Low Service Effort	no long downtime
Production Capacity and	

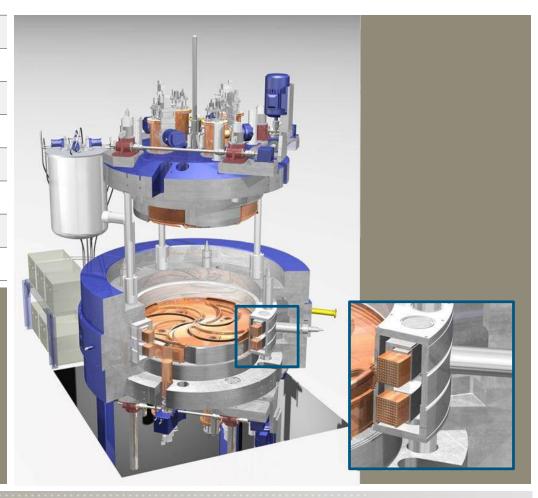
Documentation

VAR**J**AN medical systems


Hadron Centers Worldwide Statistic of Accelerators in Use

ProBeam[®] Accelerator System AC 250 Superconducting Cyclotron

Why a Cyclotron?


- Low Cost
- Compact due to Superconductivity
- Continuous, high intensity beam (IMPT)
- Low activation (Service)
- Reproducible behavior (Operations)

ProBeam 250 Mev Isochronous Cyclotron Superconducting Isochronous Cyclotron

Diameter	3 m
Weight	< 90t
Automated Op.	16 h / 6 d
Energy	70 - 250 MeV
Max Current	800 nA
Current timestr.	CW
Duty Factor	1
Service Effort	Low

Varian Project Update Overview

SCRIPPS PT CENTER

- Equipment order finalized Q4 FY11
- 3 Rotational and 2 Fixed Beam Rooms

KFMC-KING FAHD MEDICAL CITY

- Equipment Order finalized Q2 FY12
- 3 Rotational and 1Eye Tx

RINECKER PROTON THERAPY CENTER

- Equipment order finalized Q1 FY02
- 4 Rotational Gantries and 1 Fixed Beam Rooms

UNIVERSITY OF MARYLAND

- Ground breaking occurred April 2012
- 4 Rotational and 1 Fixed Beam Rooms

PTC ST PETERSBURG, RUSSIA

- Equipment Order finalized/booked Q2 FY12
- 2 Rotational Gantries

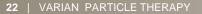
GEORGIA PT CENTER (EMORY)

- Purchase agreement finalized Q1 FY13
- 4 Rotational and 1 Fixed Beam Room

UT SOUTHWESTERN MEDICAL CENTER

- Purchase agreement finalized Q1 FY14
- 4 Rotational and 1 Fixed Beam Room

CINCINNATI CHILDREN'S HOSPITAL MEDICAL CENTER


- Purchase agreement finalized Q1 FY14
- 3 Rotational Rooms

ProBeam SC Cyclotron Series Production – Capacity 3 Cycls per year / ramping up to 6 per year

VAR AN medical systems

ProBeam Cyclotron Transport and Installation – Disassembly and packaging

ProBeam Cyclotron Transport and Installation – Installation into building

Hadron Accelerator IBA Proteus 235 / S2C2

Diameter	4,3 m
Weight	220 t
Max Energy	230 MeV
Max Current	300 nA
Time structure	CW

230 MeV , 2.4m Dia., 45t, Superconducting Synchrocyclotron under development

Proton Accelerator Sumitomo P235 Isochronous Cyclotron

Diameter Weight	4,4 m 220 t 230 MeV	Ø 4400
Max Energy Max Current	600 nA	
Time structure	CW	
New Development planned 230 55t, Superconducting Isochron	ous Cyclotron	

Hadron Accelerator Hitachi ProBEAT

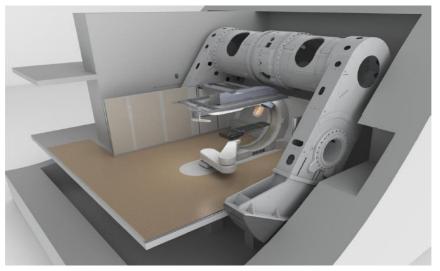
Synchrotron HITACHI Inspire the Next		
	Lattice Type	Strong Focus
Lattice Injection	Circumference	23m
from Linac	Repetition	2 – 7 sec
BM	Inj. Beam Energy	7MeV
	Ext. Beam Energy	70-250MeV
ESD RF-for	Intensity	10 ¹¹ ppp
Acc. QF Pulse Variable Spill Length 0.5 – 5 sec Pulse		5 sec Decel.

New Synchotron with 5.1m Diameter under development

> VARJAN medical systems

Proton Accelerator Mitsubishi 250 MeV Synchrotron

Linear Accelerator and Compact Snychroton Radiance 330 Proton Therapy System – ProTom International


Linear Accelerator RFQ Injector: Energy ~1.6 MeV. Compact Synchrotron: Low-cost, novel high-energy synchrotron. Energies from <70 MeV to 250 MeV for therapy applications, and up to 330 MeV for proton imaging techniques. Proton Beam Intensity: 2 Gy/liter/minute dose rate. ~1 E(10) protons/cycle. Extracted beam emittance between 1.0 x10⁻⁶ and 2.5 x10⁻⁶ m-rad. Energy and Momentum Spread: $\Delta E/E \le 0.2\%$; $\Delta p/p \sim 0.0012$ (rms). Diameter = 16 ft.

Diameter	4,8 m
Energies for therapy	70 - 250 MeV
for proton imaging	up to 330 MeV
Dose rate	2 Gy/liter/minute
Protons per pulse	~ 1x10 ¹⁰
Extracted beam emittance	1.0 x10 ⁻⁶ to 2.5 x10 ⁻⁶ m-rad

Hadron Accelerator Mevion 9T Synchrocyclotron

Diameter	~2 m
Weight	~20 t
Max Energy	250 MeV
Max Current	?
Current.	?
Duty factor	low

OUTLOOK

Cyclotrons

Synchrotrons

Other

Outlook Cyclotron / Synchrotron Improvements

SYNCHROTRON
 Synchrotron: Protom and Hitachi show more compact and simple synchrotron design Can cost be reduces to compete with superconducting cyclotron? Can footprint be reduced to compete with superconducting cyclotron? What can be done to improve average current and duty factor?

Outlook Other Accelerator Concepts

LINEAR ACCELERATORS	LASER ACCELERATION
Dielectric Wall Accelerator - still ongoing? Chances? Other?:	Big Interest and Potential – Development ongoing at many sites:
	What is total cost ?
How can cost be reduced ?	Achievable Puls Rate ?
Can length be reduced ?	Robust 16h/6d Operation?
Improved acceleration gradient ?	
How can puls rate be increased ?	

To make the benefits of Hadrontherapy available to more people:

Reduce cost of systems

Reduce footprint

Simplify systems

Simplify operation

THANK YOU

