

Prospects for the use of HTS in high field magnets for future accelerator facilities

A. Ballarino CERN, Geneva, Switzerland

Outline

Introduction

HTS Conductors

- State of the art development
- Conductor choices for high fields
- > HTS Cables

> Application to high field magnets

- HTS Magnet design aspects
- Coils demonstration
- > Developments for a viable HTS technology

➢Conclusions

Introduction

HTS Conductors

- > State of the art development
- > Conductor choices for high fields
- > HTS cables

> Application to high field magnets

- HTS Magnet design aspects
- > Coils demonstration
- Developments for a viable HTS technology

> Conclusions

Transition temperature of superconductors

Properties of superconductors

	Tc(0) [K]	Bc2(0 K) [T]	ξ (nm)
Nb-Ti	9.5	14.4	~ 6
Nb ₃ Sn	18.3	28-30	~ 4
REBCO	93	> 100	~ 2
BSCCO 2212	95	> 100	~ 1
BSCCO 2223	110	> 100	~ 1

Bc2(0 K) > 100 T

Bc2(0) = upper critical field at 0 K ξ = coherence length

Properties of HTS superconductors

- Hc₂(T) much higher than for Nb-Ti and Nb₃Sn
- But, thermal fluctuation effects depress the irreversibility field (Birr) at which Jc = 0 well below Bc2, except at low T

Irreversibility line of HTS

Properties of HTS superconductors

- > Hc₂(T) much higher than for Nb-Ti and Nb₃Sn
- But, thermal fluctuation effects depress the irreversibility field (Birr) at which Jc = 0 well below Bc2, except at low T

High fields → Low (liquid helium) temperature

High field for HTS superconductors

 \sim 1200 t in LHC

~ 25 t for Hi-Luminosity LHC
~ 600 t for ITER

Up to 10 T

Up to 15- 16 T

HTS at 4.2 K and for fields above 16 T

A. Ballarino

Challenges of HTS superconductors

- **Copper oxides HTS (cuprates)**
- Layered crystal structure
- > Orientation of grains needed
- > Brittle ceramic materials
- → Long time R&D

Ex. YBa₂Cu₃O₇ (YBCO)

Critical current density

Measurements performed at CERN on commercial materials. The Nb-Ti curve is at 1.9 K BSCCO 2212 measurements performed at NHMFL

A. Ballarino

Introduction

HTS Conductors

State of the art development

- Conductor choices for high fields
- > HTS cables

> Application to high field magnets

- > HTS Magnet design aspects
- > Coils demonstration
- Developments for a viable HTS technology

≻Conclusions

HTS Conductor Choices

Sumitomo DI-BSCCO tape

BSCCO 2223 Multi-filamentary tape ~ 4.3 mm × 0.23 mm ~ 40 % SC

REBCO Coated Conductor Tape ~ 4 mm × 0.16 mm ~ 1% SC

BSCCO 2212

Multi-filamentary wire

 Φ = 0.8-1.4 mm

~ 30 % SC

IPAC 14, 15-20 June 2014

OST BSCCO 2212 wire

A. Ballarino

BSCCO 2223 tape

Most mature superconductor

DI-BSCCO 2223 (Sumitomo)

Unit lengths of up to 300-400 m Production capacity @ Sumitomo = 1000 km/year Implemented quality control Ic variation over unit length < 3 %

Good mechanical properties

 ε_{c} = 0.57 % σ_{c} = 430 MPa

Je(77 K, s.f.) up 150 A/mm² Je(4.2 K, B⊥=17 T) up to 400 A/mm²

REBCO tape

Tapes based on bi-axially textured YBCO film

Highest Jc than any other superconductor

Substrate (Hastelloy C, Stainless steel) thickness \sim 50 μm

- Superconductor thickness \sim 1 to 5 μm
- Unit lengths of up to 100-200 m
- **Good mechanical properties**
- σ_c > 550 Mpa
- It is wound as reacted conductor: Wind and React technology

Several manufacturers (Europe, USA, Korea, Japan, Russia)

Ic anisotropy

REBCO, BSCCO 2223

A. Ballarino

REBCO tape

Potentials for Je enhancement by reduction of thickness of substrate and increase the thickness of superconducting layer (texture vs thickness)

Addition of nanoscale defects (nanoparticles and nanorods) with strong pinning properties for enhancement of in-field Jc - BaZrO3 (BZO) nano-columns

REBCO tape

UNIVERSITY of **HOUSTON**

Measurements by J. Jaroszynski, D. Abraimov, X. Hu and D. Larbalestier, NHMFL

 $Je(4.2 \text{ K}, B \perp = 20 \text{ T}) \sim 1000 \text{ A/mm}^2$

Pinning force in REBCO

 $Fp(Nb-Ti) \sim 17 MN/m^3 (4.2 \text{ K and 5 T})$

BSCCO 2212 round wire

D. Larbalestier et al, Nature Materials, NMAT 3887

It requires Wind & React technology

A. Ballarino

MgB₂ tape and wire

- > Potentially large H_{c2}
- Excellent chemical and mechanical compatibility with high-strength alloys (steels)
- Weak-link free grain coupling

- $\rm H_{c2}\,$ of optimally dirty $\rm MgB_{2}\, exceeds\,$ those of NbTi and $\rm Nb_{3}Sn$
- > Round wire
- > Well-knowm PIT technolgy
- Low raw material cost
- Moderate anisotropy

Lack of natural defects may be the responsible for fast decrease of Jc in increasing fields

Needed enhanchment of H_{c2} and H_{irr} in wires

MgB₂ wire

Industrial Wire

⊕ = 0.85 mm
 Round MgB₂
 Columbus wire
 CERN-Columbus
 development

Superconducting Links for Hi-Luminosity LHC

Reached @ CERN 20 kA @ 24 K 2×20 m long MgB₂ cables

First demonstration of high-current capability in MgB₂ cables

Low-field application for electrical transfer lines

Iron-based superconductors

Tc up to 56 K

High Bc2 – Bc2(0) up to 100-200 T $\xi \sim$ 1-3 nm

Low electromagnetic anisotropy

Wire Tape Coated conductor

Iron-based superconductors

Upper Critical field Bc2(T)

C. Tarantini et al., ASC Center

Introduction

HTS Conductors

- State of the art development
- Conductor choices for high fields
- > HTS cables

> Application to high field magnets

- > HTS Magnet design aspects
- > Coils demonstration
- Developments for a viable HTS technology

>Conclusions

Engineering critical current density

Graphic courtesy of P. Lee, ASC Center at NHMFL

A. Ballarino

IPAC 14, 15-20 June 2014

Summary of conductor characteristics

BSCCO 2223	REBCO	BSCCO 2212	
Таре	Таре	Wire	
Multi-filamentary	Thin-film	Multi-filamentary	
Single-layer	Twisted-filaments	Twisted-filaments	
Anisotropic	Anisotropic	Isotropic	
I(B,T,ୠ)	I(B,T, २)	I(B,T)	
New cables	Reacted conductor	High pressure HT	
Lower Je	High Je	High Je	
L~300 m	L=100-200 m	Not an issue	

Introduction

HTS Conductors

- State of the art development
- Conductor choices for high fields
- HTS cables

> Application to high field magnets

- > HTS Magnet design aspects
- Coils demonstration
- Developments for a viable HTS technology

≻Conclusions

Superconducting cables cables

Superconducting cables for accelerator technology:

- High current
- \succ High compactness \rightarrow High Je
- Full transposition
- Dimensional accuracy
- Controlled inter-strand resistance
- Good mechanical properties
- > Windability

Nb-Ti LHC Rutherford cable

Rutherford cables made from Nb-Ti and Nb₃Sn round wires

Large Hadron Collider: 7600 km (1200 tons) Nb-Ti Rutherford cables

Superconducting cables cables

Nb₃Sn Hi-Luminosity LHC Rutherford cables

Rutherford cables from BSSCO 2212 round wires

D. Dietderich et al., LBNL REBCO and BSCCO 2223: the tape geometry requires new cable concepts

REBCO Roebel Cables

Fig 1.

16.2

Fis. 3.

Meander-tape cut from a 12 mm wide REBCO tape

Patent (1912) of
Ludwig Roebel (BBC)
Low-loss Cu cables
for power generators

F.A.A

Cables produced by KIT and General Cable Superconductors from commercial REBCO tape

A. Ballarino

REBCO Roebel cables

- Measurements performed at CERN show current capability
- Required management of stress and of stress distribution

Introduction

HTS Conductors

- State of the art development
- Conductor choices for high fields
- > HTS cables

> Application to high field magnets

- HTS Magnet design aspects
- Coils demonstration
- > Developments for a viable HTS technology

≻Conclusions

Field of Nb₃Sn dipole magnets

Plot courtesy of A. Godeke, LBNL

A. Ballarino

High-field magnets

Graded-block design

A. Ballarino

20 T for 100 TeV in 80 km

Cosine theta type magnet, Nb-Ti and Nb₃Sn and HTS insert. Bore Φ = 40 mm

20 T magnet in 80 km tunnel							
	Width	Average	Overall Jc	Strand Jc (eng)	Conductor		
	(mm)	radius (mm)	(A/mm2)	(A/mm2)	mass (t)		
HTS layer	25	32.5	231	600	1409		
10 mm collar							
Nb ₃ Sn layer 1	20	65	193	386	2930		
Nb ₃ Sn layer 2	20	85	385	770	3685		
20 mm collar							
Nb-Ti layer 1	15	122.5	337	523	5275		
Nb-Ti layer 2	15	137.5	433	672	5925		

1400 tons of HTS + 6600 tons Nb₃Sn + 11300 tons of Nb-Ti

~13 times Nb₃Sn for ITER

 ${\sim}10$ times Nb-Ti for LHC

A. Ballarino

HTS Solenoids to provide focusing

- Very high fields (> 30 T, hybrid, LHe operation) Next generation of high resolution NMR
- REBCO tape well-suited. It is wound in pancakes with stainless steel for both insulation control of the large hoop (and radial) stresses

Conductor considerations:

(+) Field parallel to the tape plane

(+) Mechanical reinforcement to mitigate radial forces

32 T User magnet at NHMFL

Total field	32 T
Field inner YBCO coils	17 T
Field outer LTS coils	15 T
Cold inner bore	32 mm
Current	186 A
Inductance	436 H
Stored Energy	7.54 MJ

Cosθ - LHC Dipole

Block design

Common-coil design (R. Gupta, BNL)

Field direction \rightarrow Isotropic conductor Field direction \rightarrow Field direction \rightarrow REBCO tapeIsotropic conductorStress easier to manage

Cosθ - LHC Dipole

Common-coil design

Canted Cos Dipole

A. Ballarino

HTS Aligned coil block design

Aperture = 40 mm

5 T in a background field of 15 T

A. Ballarino

IPAC 14, 15-20 June 2014

Introduction

HTS Conductors

- State of the art development
- Conductor choices for high fields
- > HTS cables

> Application to high field magnets

- > HTS Magnet design aspects
- Coils demonstration

Developments for a viable HTS technology

≻Conclusions

HTS Coils Demonstrators 33.8 T, BSCCO 2212, NHMFL

33.8 T, REBCO, NHMFL

REBCO coil 2.8 T in background field of 31 T H.. W. Weijers et. al, 2008

BSCCO 2212 coil, heat treatment at 10 bar 2.6 T in background field of 31.2 T D. Larbalestier et al, NMAT 3887

REBCO and BSCCO 2223 coils R. Gupta et al., BNL

BSCCO 2212 coil from Rutherford cable A. Godeke et al, 2010

A. Ballarino

Introduction

HTS Conductors

- State of the art development
- Conductor choices for high fields
- > HTS cables

> Application to high field magnets

- > HTS Magnet design aspects
- > Coils demonstration
- > Developments for a viable HTS technology

>Conclusions

Quench protection

Low quench propagation

Quench <u>detection</u>

Sensitive systems to detect in the 10-20 mV range

Quench protection Fast propagation of resistive zone

Technologies to be developed

- Need for mastering technologies for coil fabrication with HTS materials:
- Electrical insulation techniques
- Electrical joints techniques
- Winding techniques
- For BSCCO 2212: high pressure on coils during high temperature heat treatment - Wind & React technology

Conclusions (1/3)

- HTS Conductors are available today with characteristics that make them suitable for use in high field magnets
- Demonstration coils show capability. There is a clear route to boosting solenoids to > 30 T, and work is on going to find a route to use in dipole magnets

Conclusions (2/3)

- Differences with classical LTS conductors are such that the use of HTS materials in high field magnets requires a major rethink of existing technology and mode of operation
- Prototype coils shall be made in order to to learn about HTS performance in magnets
- HTS conductors are presently expensive. A large application (like MRI for Nb-Ti) would be required to justify boosting production to a level that would enable significant cost reduction

Conclusions (3/3)

More recent conductors are potentially more affordable than those presently available, but a determined R&D effort is needed to boost the performance to a level that would be useful for improving the field in a high field magnet

> A magnet can never perform better than the conductor it is made of

Thanks for your attention