First experience with electron lenses for beam-beam compensation in RHIC

<u>W. Fischer</u>, X. Gu, S.M. White, Z. Altinbas, D. Bruno, M. Costanzo, J. Hock, A. Jain, Y. Luo, C. Mi, R. Michnoff, T.A. Miller, A.I. Pikin, T. Samms, Y. Tan, R. Than, P. Thieberger

Brookhaven National Laboratory

RHIC electron lenses commissioning

Head-on beam-beam compensation motivation, principle, historyRHIC electron lens design overview

magnetic structure electron beam

Commissioning to date

hardware electron beam gold beam

Outlook

Contents

RHIC electron lenses

Motivation

RHIC electron lenses

Motivation

NATIONAL LABORATORY

Goal:

Bunch intensity in 2012 polarized proton physics store

Head-on beam-beam compensation

Phase space

Compensation of:

1. Tune spread

=> e-p has same amplitude dependent force as p-p

2. Resonance driving terms

=> phase advance between p-p and e-p is $\Delta \psi = k\pi$

Tune distrib. and RDT

Lens compresses footprint

 $N_{\rm b} = 3 \times 10^{11}$ p, w/o and w/ 50% HOBBC

[Y. Luo et al., PRSTAB 15, 051004 (2012).]

Tune distrib. and RDT

Lens compresses footprint

 $N_{\rm b} = 3 \times 10^{11}$ p, w/o and w/ 50% HOBBC

[Y. Luo et al., PRSTAB 15, 051004 (2012).]

Tune distrib. and RDT

Lens compresses footprint

Lattice minimizes RDTs

[Y. Luo et al., PRSTAB 15, 051004 (2012).]

Head-on BB compensation

Amplitude dependent kick

- Amplitude dependence of beam-beam kick fundamentally different from magnets (strength not monotonically increasing in BB)
- Another beam can produce same kick of opposite sign

Head-on beam-beam compensation in DCI

- Head-on beam-beam compensation was only tested in DCI (starting in 1976)
- 4-beam collider (e⁺e⁻e⁺e⁻) for complete space charge compensation
- Main parameters:
 - Circumference 94.6 m
 - 1.8 GeV • Energy
 - Beam-beam ξ ~0.05-0.1
 - Luminosity (design) ~10³² cm⁻²s⁻¹

The Orsay Storage Ring Group, "Status report on D.C.I.", PAC77

Technology

Tevatron lenses and EBIS

Fermilab Tevatron E-lens

V. Shiltsev, A. Burov, A. Valishev, G. Stancari, X.-L. Zhang, et al.

BNL Electron Beam Ion Source

J. Alessi, E. Beebe, D. Raparia, M. Okamura, A. Pikin et al.

5 T

20 kV

2 lenses in Tevatron:

- Solenoid field
- Solenoid length
- e-beam energy
- e-beam current 0.6/3 A (pulsed) 1 A (DC)

6 T

2.7 m

5/10 kV

RHIC e-lens

- **6** T (\pm 50 μ m straight)
- 2 m
- 10 kV

Ion source for RHIC:

- Solenoid field
- Solenoid length 2 m
- e-beam energy
- e-beam current
- 10 A (pulsed)

Deviations from ideal head-on compensation

- 1. <u>Deviations from:</u> Same amplitude dependent force in p-beam and e-beam lens
 - e-beam current does not match p-beam intensity
 - e-beam profile not Gaussian
 - e-beam size ≠ p-beam size
 - time-dependence (noise) of e-beam and p-beam parameters
- 1. <u>Deviations from</u>: Phase advance between p-beam and e-beam lens is $\Delta \Psi = k\pi$
 - linear phase error in lattice
 - long bunches $(\sigma_s > \beta^*)$
 - sextupoles, octupoles, magnetic triplet errors between p-p and e-p

=> need to be able to tolerate

=> choice of β^* (not too small)

=> technology and

=> lattice design

instrumentation

Studied all tolerances with simulations [Y. Luo et al, PRSTAB 15, 041001 (2012)]

RHIC electron lenses

Overview

Superconducting solenoid main field

Main solenoid field provides transverse electron beam profile with p-beam

Hardware

Vertical test

Horizontal test

- Solenoid 1: 5/4.4 T (10 double-layers)
- Solenoid 2: 6 T

(11 double-layers)

J. Muratore et. al, MT-23 (2013).

HardwareSolenoid field straightness (A. Jain)Straightness tolerances (±15% rms beam size) for sufficient overlapMeasured with magnetic needle and mirror, pulled on track

Electron lens commissioning

Au vs p beams

	Au+Au 2014	p+p 2015 (100 GeV)
Beam loss	~8 %/hour burn-off dominated	~3 %/hour beam-beam dominated
Emittance growth	negative IBS + stoch. cooling	positive beam-beam
Max beam-beam param. ξ	0.006 / IP	0.012 / IP
$\sigma_{ ext{e-beam}}$ / $\sigma_{ ext{p-beam}}$	≈ 2	≈ 1

Electron lens commissioning

Au vs p beams

	Au+Au 2014	p+p 2015 (100 GeV)
Beam loss	~8 %/hour burn-off dominated	~3 %/hour beam-beam dominated
Emittance growth	negative IBS + stoch. cooling	positive beam-beam
Max beam-beam param. ξ	0.006 / IP	0.012 / IP
$\sigma_{ ext{e-beam}}$ / $\sigma_{ ext{p-beam}}$	≈ 2	≈ 1

Cooled Au beam allows for reversal of emittance growth in tests during physics stores, even training quenches of solenoids.

Electron beam

Current

- thermionic gun (IrCe BINP, LaB_6)
- pulsed (<1 turn) or DC
- $R = 4.1 \text{ mm}, \rho = 7.5 \text{ A cm}^{-2}$
- fitted perveance: 1.0x10⁻⁶ AV^{-1/5}

Endurance tests during Au+Au physics operation

00:00

03:00

06:00

09:00

15:00

12:00

18:00

21:00

Electron beam

Transverse profile

Gaussian profile critical for correction of nonlinear effects

2 devices for transverse profile measurement:

- YAG screen
- pinhole detector

Electron beam

Transverse profile

Gaussian profile critical for correction of nonlinear effects

2 devices for transverse profile measurement:

- YAG screen
- pinhole detector

Effect on orbit and tune

Response to vertical displacement of Yellow beam at store

Also used as first alignment tool (slow)

Beam Transfer Function

BB + e-lenses

Vertical BTF measurement during physics store (most bunches with 2 collisions)

Coherent mode emerging with increasing electron current

Beam Transfer Function

BB + e-lenses

Vertical BTF measurement during physics store (most bunches with 2 collisions)

Tune spread from BTFin presence of coherent modes

P. Görgen, TU Darmstadt, TUPRO032, Ph.D. thesis soon

- Determine Im(BTF)
 - Suppress
 coherent modes
 in analysis
 (location known)

Transverse alignment

Backscattered electrons

- 2 BPMs in both lenses to bring e- and A- beam in proximity BPMs see 3 beams: 2 hadron and 1 electron beam (rise/fall time 10x longer)
- Use detection of backscattered electrons to maximize overlap P. Thieberger, BIW12, IBIC2014

- Signal with large dynamic range (~10⁶)
- Used for automatic position and angle alignment, same as luminosity maximization

Loss rate and emittance growth with **Blue DC** e-beam

Loss rate and emittance growth with **Blue DC** e-beam

Ion accumulation and relative emittance with Blue DC e-beam

- Residual gas ionization by hadron and electron beam
- DC electron beam forms transverse potential
- Drift tubes create longitudinal voltage for ion extraction (damaged some feedthroughs during bake-out)

Ion accumulation and relative emittance with Blue DC e-beam

Ion accumulation and relative emittance with Blue DC e-beam

Beam-beam driven instabilities

S. White

$$B_{th} = \frac{1.3eN_b\xi_{el}}{r^2\sqrt{\Delta QQ_s}}$$

<x> [m]

Instability threshold for solenoid field (approximate) [A. Burov et al. PRE 59, 3605 (1999), also see S. White, BB2014 for simulations]

Simulation shows instability with $N_b = 1.2 \times 10^9$ Au/bunch and 1.5 T

Beam-beam driven instabilities

S. White

RHIC electron lenses

Preparation for 2015

2015 – First proton run with electron lenses => compensation

Upgrades for 2015

- •Larger cathodes (7.5 vs. 4.1 mm radius)
 - => allows for matched beam size with high solenoid field
 - => raises instability threshold
 - => easier alignment
- Transverse damper
 raises instability threshold

- •New lattice, based on ATS optics (S. Fartoukh, CERN)
 - => phase advance kp between p-p and p-e interactions
 - => small nonlinear chromaticity
 - => no depolarization

Lattice for 2015 (S. White) – Simulations (Y. Luo)

Lattice for 2015 (S. White) – Simulations (Y. Luo)

Acknowledgements

Brookhaven National Laboratory

M. Anerella, M. Bai, C.D. Dawson, A.K. Drees, B. Frak, G. Ganetis, D.M. Gassner, R.C. Gupta, P. Joshi, K. Hock, L. Hoff, P. Kovach, R. Lambiase, K. Mirabella, M. Mapes, A. Marone, A. Marusic, K. Mernick, M. Minty, C. Montag, J. Muratore, S. Nemesure, S. Plate, G. Robert-Demolaize, L. Snydstrup, S. Tepikian, C.W. Theisen, J. Tuozzolo, P. Wanderer, W. Zhang **STAR** and **PHENIX** experiments – supported parasitic commissioning

Institutions

FNAL: TEL experience, beam-beam experiments and simulations **US LARP:** beam-beam simulation **CERN:** beam-beam experiments and simulations

Individuals

H.-J. Kim, V. Shiltsev, T. Sen, G. Stancari, A. Valishev, G. Kuznezov, FNAL;
G. Kuznezov, **BINP**; X. Buffat, R. DeMaria, J.-P. Koutchouk, T. Pieloni, F.
Schmidt, F. Zimmermann, **CERN**; V. Kamerdziev, **FZJ**; A. Kabel, **SLAC**;
P. Goergen, **TU Darmstadt**

RHIC electron lenses commissioning Summary/Outlook

Status

•Electron lenses installed in both rings

•Magnetic structure commissioned – one solenoid still to reach design field, straightness requirements met (<15% deviation from rms beam size)

•Electron beam current (pulsed and DC) and Gaussian profile demonstrated

•Instrumentation commissioned – novel detector of backscattered electrons used for automatic alignment

•Measured effect of e-beam on orbit, tune, BTF - as expected

•Demonstrated no additional emittance growth (resolution ~1h)

Upgrades for 2015

- •Larger cathode
- Transverse damper
- •New lattice

2015 polarized proton run will be first opportunity for head-on beam-beam compensation

