Erk Jensen/CERN

O. Brüning, C. Bracco, R. Calaga, N. Catalan-Lasheras, B. Goddard, R. Torres-Sanchez, A. Valloni/CERN; M. Klein/CERN and U-Liverpool

Design Study of an LHeC ERL Test Facility at CERN

Many special thanks to

K. Aulenbacher (JG|U), A. Bogacz, A. Hutton (JLAB), O. Brunner, E. Ciapala, S. Calatroni, T. Junginger, E. Montesinos, K. Schirm, D. Schulte, A. Milanese, E. Shaposhnikova, J. Tückmantel †, W. Venturini, W. Weingarten, D. Wollmann (CERN)

Outline

- Introduction: LHeC and FCC-he
- The ERL-TF: Goals and parameters
- Layout and Optics
- ERL Cavity/Cryomodule Development
- o Summary

Introduction

LHeC and FCC-eh

17 Juni 2014

IPAC '14, Dresder

Erk Jensen: ERL Test Facility

3

LHeC Physics – complementary to pp and e+e-

CERI

LHeC

- Phyics Goals: Colliding LHC proton beam with e⁻ or e⁺ beam
 - Exploration of the energy frontier, complementing the LHC for BSM physics with high precision DIS measurements!
 - Investigation of a variety of fundamental questions in strong and electroweak interactions;
 - Electron-ion scattering in a (Q², 1/x) range extended by 4 orders of magnitude as compared to previous lepton-nucleus DIS experiments;
 - Novel investigations of neutron's and nuclear structure, initial conditions of Quark-Gluon Plasma formation and further QCD phenomena;
 - > With $\mathcal{L} = \mathcal{O}(10^{34})$: Higgs factory via vector boson fusion
- Constraints and challenges:
 - ▶ Power consumption ≤ 100 MW!
 - $\succ O(60 \text{ GeV})$ ERL with two 10 GeV Linacs, 3 passes
 - > Luminosity $O(100 \text{ fb}^{-1})$ with $10^{33} \text{ cm}^{-2} \text{s}^{-1}$ (100 x HERA) (and possibly more!)
 - > No interference with pp physics!

LHeC options: RR and LR

17 Juni 2014

IPAC '14, Dresden

LHeC options: RR and LR

Study team provided CDR: Ring-ring option, feasible but impact LHC operation during installation

LHeC options: RR and LR

Study team provided CDR: Ring-ring option, feasible but impact LHC operation during installation Linac-ring option, the baseline A solution exists, will now have to find the best solution

Already have a baseline and alternatives for some components

17 Juni 2014

LHeC LR option (baseline)

Super Conducting Linac with Energy Recovery

& high current (> 6 mA) Two 1 km long SC linacs in CW operation $(Q_0 > 10^{10})$

requires cryogenic system comparable to LHC system!

Relatively large return arcs

- → ca. 9 km underground tunnel installation
- → total of 19 km bending arcs
- → same magnet design as for RR option: > 4500 magnets

LHeC LR option (baseline)

Super Conducting Linac with Energy Recovery

& high current (> 6 mA)

	tune-up dump	10 ³³ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
	0.12 km comp. RF 1.0 km	Beam Energy [GeV]	7000	60
		Luminosity $[10^{33} \text{ cm}^{-2} \text{ s}^{-1}]$	1	1
	10, 30, 50 GeV	Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	3.75	50
		Beta Funtion $eta^*_{x,y}[\mathrm{m}]$	0.1	0.12
		rms Beam size $\sigma^*_{x,y}$ [μ m]	7	7
	↔ 10-GeV linac 0.03 km	rms Beam divergence $\sigma'^*_{x,y}$ [μ rad]	70	58
		Beam Current [mA]	430 (860)	6.6
R۵	lativoly largo r	Bunch Spacing [ns]	25 (50)	25 (50)
		Bunch Population	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹
~	ca. 9 km under	Bunch charge [nC]	27	(0.16) 0.32

total of 19 km benaing arcs

→ same magnet design as for RR option: > 4500 magnets

LHeC LR option (baseline)

Super Conducting Linac with Energy Recovery

& high current (> 6 mA)

	tune-up dump 10-GeV	^{linac} 10 ³³ cm ⁻² s ⁻¹ Luminosity reach	PROT	ONS	ELECTRONS	
	0.12 km	10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS		ELECTRONS	60
		Beam Energy [GeV]	7000		60	1
	10, 30, 50 GeV	Luminosity $[10^{33} \text{ cm}^{-2} \text{ s}^{-1}]$	16		16	50
		Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5		20	12
		Beta Funtion $eta^*_{x,y}[\mathrm{m}]$	0.05		0.10	7
	↔ 10-GeV 0.03 km	rms Beam size $\sigma^*_{x,y}$ [μ m]	4		4	58
		rms Beam divergence $\sigma'^*_{x,y}$ [μ rad]	80		40	5.6
Re	latively large	Beam Current [mA]	1112		25	50)
	ca 9 km und	Bunch Spacing [ns]	25		25	. 0 9
5	total of 10 k	Bunch Population	2.2*10 ¹¹		4*10 ⁹	32
~		Bunch charge [nC]	35		0.64	
7	same magne	LUESIGII AS IUL KK UPLIUIT.	24200 IIId	RIIG	LS I	

LHC Conceptual Design Report

ISSN 0954-3899

Journal of Physics G

Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN **Report on the Physics and Design Concepts for** Machine and Detector LHeC Study Group

iopscience.org/jphysg

IOP Publishing

- Published in 2012 In Journal of Physics G: \geq http://iopscience.iop.org/0954-3899/39/7/075001
 - \geq Introduction
 - Physics
 - Precision OCD and Electroweak Physics
 - Physics at High Parton Densities
 - New Physics at High Energy
 - Accelerator
 - Ring-Ring Collider
 - Linac-Ring Collider
 - System Design
 - Civil Engineering and Services
 - Detector
 - Detector Requirements
 - Central Detector
 - Forward and Backward Detectors.
 - \geq Conclusions

a

39, No 7

075001

FCC-he

- 80-100 km tunnel infrastructure in Geneva area
- *pp*-collider (*FCC-hh*) defining the infrastructure requirements
- e⁺e⁻ collider (FCC-ee) as potential intermed. step
- p-e (FCC-he) option
- international collaboration hosted by CERN

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

FCC-he

- 80-100 km tunnel infrastructure in Geneva area
- *pp*-collider (*FCC-hh*) defining the infrastructure requirements

Goals and parameters

The ERL-TF

17 Juni 2014

IPAC '14, Dresder

The Context

- In this decade, CERN is exploiting and upgrading the LHC but not constructing "the next big machine".
- CERN needs to study and develop the technologies to prepare for a possible next energy-frontier machine.
- This R&D focuses on high field magnets and high gradient acceleration. (European Strategy for Particle Physics)
- Superconducting RF is a key area this is where this planned facility comes in.

CERN management has asked us to conduct a **Conceptual Design Study** for an Energy Recovery Linac Test Facility (ERL-TF).

We have started this study and have started to establish collaborations.

Goals of a CERN ERL-Test Facility

- > Main goal: Study real SRF Cavities with beam not interfering with HEP!
 - citing W. Funk ("Jefferson Lab: Lessons Learned from SNS Production", ILC Workshop 2004 <u>http://ilc.kek.jp/ILCWS/</u>):
 - All problems will not be experienced until the complete subsystem is tested under realistic conditions. Be prepared to test, with full rf power systems and beam, all of the preproduction prototypes.
- In addition, it would allow to study beam dynamics & operational aspects of the advanced concept ERL (recovery of otherwise wasted beam energy)!
- Exploration of the ERL concept with multiple re-circulations and high beam current operation
- Additional goals:
 - Gun and injector studies
 - Test beams for detector R&D,
 - Beam induced quench test of SC magnets
 - \succ ... later possibly user facility: e^- test beams, CW FEL, Compton γ -ray source ...
- At the same time, it will be fostering international collaboration (JG|U Mainz and TJNAF collaborations being formalized)

Parameters of the ERL-TF

Parameter	Value		
injection energy	5 MeV		
RF <i>f</i>	801.59	MHz	
acc. voltage per cavity	18.7 ו	VIV	
# cells per cavity	5		
cavity length	≈ 1.2	2 m	
# cavities per cryomodule	4		
RF power per cryomodule	$\leq 50 \text{ kW}$		
# cryomodules	4*)		
acceleration per pass	299.4 MeV *)		
bunch repetition <i>f</i>	40.079 MHz		
Normalized emittance $\gamma \epsilon_{x,y}$	50 μm		
injected beam current	< 13 mA		
nominal bunch charge	$320 \text{ pC} = 2 \cdot 10^9 e$		
number of passes *)	per of passes *) 2 3		
top energy *)	top energy *) 604 MeV 903 Me		
total circulating current *) 52 mA 78 m			
duty factor	CW		

*) in stages

Layout and optics

17 Juni 2014

IPAC '14, Dresden

Erk Jensen: ERL Test Facilit

19

Layout stage by stage

STEP 1

SC RF cavities, modules and e⁻ source tests, single pass

- Injection at 5 MeV ARC **ENERGY** - 1 pass ARC 1 **80 MeV** - 75 MeV/linac Final energy 150 MeV ARC 2 155 MeV

A. Valloni, A. Bogacz

IPAC14

Layout stage by stage

STEP 2	ARC	ENERGY
Test the machine in Energy Recovery Mode	ARC 1	80 MeV
 Injection at 5 MeV 3 passes 75 MeV/linac Final energy 450 MeV 	ARC 2	155 MeV
	ARC 3	230 MeV
	ARC 4	305 MeV
	ARC 5	380 MeV
	ARC 6	455 MeV

Recirculation realized with vertically stacked recirculation passes

A. Valloni, A. Bogacz

IPAC '14, Dresden

Layout stage by stage

STEP 3	ARC	ENERGY
Additional SC RF modules test	ARC 1	150 MeV
Full energy test in Energy Recovery Mode	ARC 2	300 MeV
 3 passes 150 MeV/(double length linac) Final energy 900 MeV 	ARC 3	450 MeV
	ARC 4	600 MeV
	ARC 5	750 MeV
	ARC 6	900 MeV

A. Valloni, A. Bogacz

IPAC14

Linacs multi-pass optics

➤ step 3:

	$\rightarrow \leftarrow$		$\rightarrow \leftarrow$		$\rightarrow \longleftarrow$	
5	155	305	455	605	755	905
MeV	MeV	MeV	MeV	MeV	MeV	MeV

A. Valloni, A. Bogacz

17 Juni 2014

Erk Jensen: ERL Test Facility

605

MeV

905

MeV

755

MeV

0.1

0.05

-0.05

-0.1

5

MeV

5

MeV

DRIFT

155

MeV

305

MeV

455

MeV

80

MeV

Arcs layout

Arc 1 optics

Arc 3 optics

Arc 5 optics

Arc optics option 2

Identical optics layout for all arcs (150 ... 900) MeV

IPAC '14, Dresden

Footprint

Arcs

Total length for Arc 1, 3, 5: $34.5112 \text{ m} = 94 \times \lambda_{RF}$ (last cavity linac1 to first cavity linac 2)

Total length for Arc 2, 4: $34.2704 \text{ m} = 101 \times \lambda_{RF}$ (last cavity linac2 to first cavity linac 1)

Total length for Arc 6: $34.4574 \text{ m} = 101.5 \times \lambda_{RF}$ (last cavity linac 2 to first cavity linac 1)

Linacs

ONE CRYOMODULE: 8 RF CAVITIES

PARAMETER	VALUE
Frequency	801.58 MHz
Wavelength	37.4 cm
Lca vi ty= 5λ/2	93.5 cm
Grad	20.02 MeV/m
ΔE	18.71 MV per ca vi ty

Total length ~ 13 m

Injection/extraction chicane:

Length ~ 1.75 m

Total dimensions 42 m x 13.7 m

IPAC '14, Dresden

ERL-TF possible sites

We have started to look into possible existing buildings on site possibly suited to host the ERL test facility.

Example shown here: Building 2275, near LHC P2

- Current use under investigation
- Power converters already in place
- Geographically perfect as injector for LHeC ERL

Other options investigated:

- SM18, extension to building 2173? Ideal for existing infrastructures!
- Building 973 (Prévessin), former QRL testing, partially existing cryo infrastructure.

N. Catalan Lasheras

IPAC1

17 Juni 2014

PAC '14, Dresden

ERL-TF possible sites

17 Juni 2014

PAC '14, Dresden

ERL Cavity/Cryomodule Development

... only just starting

Post CDR frequency choice

LHeC Meeting at Daresbury Laboratory, January 2013

802 MHz buckets (harmonic 20 of 25 ns^{-1})

Synergetic with CERN SPS, LHC, LHC upgrades, ... JLAB-CERN-Mainz 801.58 MHz Cavity/cryomodule now under design

17 Juni 2014

IPAC '14, Dresden

Post CDR frequency choice

LHeC Meeting at Daresbury Laboratory, January 2013

802 MHz buckets (harmonic 20 of 25 ns^{-1})

Synergetic with CERN SPS, LHC, LHC upgrades, ...

JLAB-CERN-Mainz 801.58 MHz Cavity/cryomodule now under design

R&D goal: large Q_0 – recent progress

Sam Posen et al. (Cornell): "Theoretical Field Limits for Multi-Layer Superconductors", SRF 2013

Anna Grasselino et al. (FNAL): "New Insights on the Physics of RF Surface Resistance and a Cure for the Medium Field Q-Slope", SRF 2013

Andrew Hutton (JLAB), private communication 2014: recent results with large-grain Nb in low-loss shape (CEBAF upgrade end cell)

17 Juni 2014

IPAC '14, Dresden

802 MHz cavity: Some first choices

R. Calaga

120

z [cm]

120

Impedance spectra

IPAC '14, Dresden

HOM power estimate (short bunches)

R. Calaga

Note: with 13 mA injected, the total current for HOM excitation can be 80 mA!

JLAB proposal: SNS style Cryomodule

- Based on SNS CM
 - ➤ 5-cell low-loss shape
 - coaxial FPC
 - Single RF Window
 - DESY Style HOM coupler
 - Cold tuner drive
- > Overall length: 7.524 m
- Beamline length 6.705 m
- End Cans include integral heat exchange operations

IPAC '14, Dresden

JLAB CM Design Maturity

Design maturity

- Cryostat design is complete, SNS cryostat and cryogenic connection is a "drop in" design
- Jefferson Lab has existing 750 MHz and 800 MHz cavity designs
 - Needs HOM coupling design, detail SNS style coupler for this application
 - Can use SNS coupler with minimal changes for CW operations (lower) average power in this case, makes the design simpler)
- Production
 - Cryostat and power coupler costs from SNS production (2002) available
 - Costs need to be corrected for small quantity production and escalation
 - Jefferson Lab in-house cavity assembly to control schedule

A. Hutton

CERN experience: SPL Short Cryomodule

IPAC '14, Dresder

Recent SPL progress in pictures

RF Power Couplers (FPCs) E. Montesinos

 \geq

Machine	Design	Construction	Operation
SPS 200	\checkmark	✓	2001
LHC 400	\checkmark	\checkmark	2006
SPL cylindrical	~	✓	1 MW TW 550 kW SW
SPL disk	~	~	1 MW TW 1 MW SW
ESRF	✓	✓	300 kW CW
ANL-APS	✓	✓	100 kW CW
Linac 4	~	✓	750 kW SW
HIE-Isolde	To be ir	nproved	
LIU- SPS 200	To come		
SPS 800	To come		
SOLEIL	To come		
Crab Cav x 3	To come		

	Some goo	od results	this year :	
--	----------	------------	-------------	--

- > ESRF
- APS (tests still on-going)
- SPL coaxial disk
- Some still to be improved :
 - SPL cylindrical
 - HIE-Isolde
- > Some still operating without troubles :
 - > SPS 200
 - > LHC 400
- Some additional to come

HIE-Isolde

ESRF & APS

SPL cylindrical

IPAC

17 Juni 2014

The planned collaboration:

- We are now finalizing collaboration agreements with JG|U Mainz and JLAB to build prototype 802 MHz cavities/CMs together!
 - JG|U to provide infrastructure (MESA and HIM) manpower and resources

K. Aulenbacher

- CERN to design/engineer cavities, HOM dampers, FPCs, tuners, He vessel, ancillaries...
- JLAB to design/engineer the CM (based on SNS) 805 MHz concept)
- 1st prototype cavities can serve in MESA.

MESA: Mainz Energy recovering Superconducting Accel HIM: Helmholtz-Institut Tetainzcility

Summary

- The concept of the ERL-TF is designed to allow for a staged construction with verifiable and useful stages for an ultimate beam energy in the order of 1 GeV.
- A key part of the design study is the development of superconducting RF cavities and CM's.
- > This study has started in collaboration with JLAB and JG|U Mainz.
- There is strong synergy with the JG|U Mainz project "MESA" the cavities/cryomodules could be identical.
- CERN is in the process of re-establishing know-how and upgrading its facilities for SRF R&D.
- Ongoing work in SRF at CERN also includes LHC, SPL, HIE-ISOLDE, crab cavities HL-LHC; planned future work will include the study of a large circular collider (FCC).

Thank you for your attention!

www.cern.ch

Spare slides

17 Juni 2014

IPAC '14, Dresden

LHC schedule

IPAC '14, Dresden

Controlled quench tests of SC magnets

Study beam induced quenches (quench thresholds, quenchino thresholds) at different time scales for:

- SC cables and cable stacks in an adjustable external magnetic field
- Short sample magnets
- Full length LHC type SC magnets
- Vital program for the development of high field magnets for FCC-hh and HE-LHC

1 GeV = 1.602 x 10⁻⁷ mJ MB quench limit 450 GeV is 140mJ/cm³ in 10ms: $\approx 2.2 \cdot 10^9 e^-$ @ **1GeV necessary** MB quench limit 7 TeV is 16 mJ/cm³ in 10ms: $\approx 0.3 \cdot 10^9 e^-$ @ **1GeV necessary**

These numbers are well in reach (bunch charge $2 \cdot 10^9 e^-$).

IPAC '14, Dresder

possible later applications

ELI-NP is the M€ 293 pillar for nuclear physics of the European Extreme Light Infrastructure presently under construction at Magurele, near Bucharest, Romania.

It is a major laser facility, including a 700 MeV electron linac for production of intense, energy-tuneable, quasi-monochromatic, polarized gamma-ray beams.

http://www.eli-np.ro/

Interest formulated by Norbert Pietralla, IKP Darmstadt

With a ERL TF @ CERN, one could produce significantly (2 orders of magnitude) larger gamma-flux in very narrow bandwidth (CW operation)

Overview SRF Activities at CERN

➢ At the times of LEP II (1990s), CERN was at the forefront of SRF Technology

➢ Key technology: Nb sputtered on Cu!

- Then came TESLA/ILC and technology progressed tremendously CERN lagging behind ... (see previous page)
- Recently, CERN is involved in the following SRF projects/studies:

LHC	operational, 16 cavities in 4 CMs, 2 MV/cavity, Nb/Cu
HIE-ISOLDE	construction (20 + 12) QWR cavities, Nb/Cu
HL-LHC Crab Cavities	CERN coordinating; 3 different designs, bulk Nb
SPL	study, with CEA, IPNO and ESS, 4 cavity CM, bulk Nb
LHeC	design study, ERL, ERL-TF
FCC	design study – about starting now.

- Today CERN is trying to re-establish know-how and upgrade its facilities to be able to perform relevant R&D and help prepare SRF technology for the future.
- In the centre of attention (but not exclusively) are again the thin-film techniques

State of the art in magnetron sputtered Nb/Cu films

 $Q_0 = 1 \cdot 10^{10} @ 15 \text{ MV/m}$ is a value that would make film cavities a competitive option in several future projects. Current R&D is focussed on improving the "slope", applying films to new geometries, new materials

17 Juni 2014

IPAC '14, Dresder

Possible origin of Q-slope: film defects

Crystallographic defects can be at the origin of reduced H_{c1} compared to bulk Nb

 $\frac{1}{l_{total}} = \frac{1}{l_{intra-grain}} + \frac{1}{D}$

RRR of films: $10 \div 30$ \Rightarrow mfp of films ($30 \div 100$) nm

Grain size of films > 100 nm \Rightarrow RRR limited by intra-grain defects in most cases

The goal is to make films as bulk-like as possible in terms of microstructure. The grain size does not seem to be a major issue

17 Juni 2014

IPAC '14, Dresden

Erk Jensen: ERL Test Facility

S. Calatroni

HiPIMS: a way to produce Nb ions for coating

With HIPIMS at this early stage we are currently at the level of the best performing magnetron sputtering coatings, for an equivalent surface preparation (SUBU vs EP)

17 Juni 2014

IPAC '14, Dresden

Superconducting Proton Linac - SPL

- > $\beta = 0.65$ cavities developed by IPN Orsay, tested at CEA Saclay
- > $\beta = 1$ cavities developed and tested by CEA Saclay and (short CM) by CERN.
- Strong Synergy and collaboration established with the European Spallation Source

For more details: <u>http://ipnweb.in2p3.fr/srf2013/papers/friob04.pdf</u>

SPALLATION SOURCE

SPL Short Cryomodule

New supporting system (by double-walled tube) could minimize heat load to 2 K bath

IPAC '14, Dresder

Cryolab Activities

New Coating Technologies: HIPIMS on 1.3 GHz cavities

Collaboration with S. Calatroni and G. Terenziani

Fundamental SRF studies using the Quadrupole Resonator

PhD Thesis S. Aull (Univ. Siegen) Supervisor: S. Doebert

Cavity Diagnostic Developments with OSTs

Master Thesis B. Peters (Univ. Karlsruhe) Co-Supervisor T. Koettig

New Electron-Beam Welding Machine

CERN

17 Juni 201

IPAC '14, Dresden

Electro-polishing

High pressure rinsing

O. Capatina, L. Marques, K. Schirm

IPAC '14, Dresden

2 K Cryo-upgrade in SM18

2 K Cryo-upgrade in SM18

Cavity and module test area SM18

IPAC '14, Dresden

SM18: Clean room & Preparation Zone Upgrade

PAC '14, Dresden

Erk Jensen: ERL Test Facility

63

New cavity reception area

IPAC '14, Dresden

Cavity diagnostics

Quench localization via second sound on SPL cavities

Fundamental research

J. Chambrillon, K. Liao, B. Peters, K. Schirm

IPAC '14, Dresden

Cavity ancillaries

Bead-pull measurement setup for field mapping

Cell-by-cell tuning system

F. Pillon, S. Mikulas, K. Schirm

IPAC '14, Dresden

