



Computation of Eigenmodes in Long and Complex Accelerating Structures by Means of Concatenation Strategies

Thomas Flisgen, Johann Heller and Ursula van Rienen

5<sup>th</sup> International Particle Accelerator Conference Dresden, Germany, 15<sup>th</sup> – 20<sup>th</sup> of June 2014





### Outline

- Introduction, motivation and fundamental terms
- Challenges in computation of eigenmodes and R/Q parameters and  $Q_{ext}$  factors in long cavity chains
- Actual approach: State-Space Concatenations
- Proof of principle: analysis of multi-cavity monopole modes in chains of third harmonic cavities
- Conclusions and outlook





# Introduction, Motivation and a few Fundamental Terms







#### **∏**-Mode and other Eigenmodes of a Cavity



∏-mode used for particle acceleration

three arbritarily chosen Higher Order Modes (HOMs)



#### Two Quantities\* of Interest for Modal Analysis

$$Q_{\text{ext},\nu} = \frac{\tilde{\omega}_{\nu} W_{\text{stored}}}{P_{\text{ports},\nu}}$$

factor describes the energy loss through ports ( $Q_{ext}$  factor should be large for  $\Pi$ -mode and small for other modes)

$$\frac{R_{\nu}}{Q_{\text{beam},\nu}} = \frac{|V_{\nu}|^2}{\tilde{\omega}_{\nu} W_{\text{stored},\nu}}$$

factor describes the interaction between modes and beam and vice versa (should be large for  $\Pi$ mode and small for other modes)

$$V_{\nu} = \int_0^L \tilde{E}_{\nu,z}(0,0,z) \,\mathrm{e}^{j\tilde{\omega}_{\nu}z/c} \mathrm{d}z$$

\*amongst other





# Challenges in Computation of Eigenmodes, R/Q Parameters and Q<sub>ext</sub> and in Long Chains



### String of Cavities in ACC39 @ FLASH Beamline





Cutoff frequencies of beam pipes:

| 1. TE11 | Pol. 1 | f <sub>co</sub> = 4.3920 GHz  |
|---------|--------|-------------------------------|
| 2. TE11 | Pol. 2 | $f_{co} = 4.3920 \text{ GHz}$ |
| 3. TM01 |        | $f_{co} = 5.7371 \text{ GHz}$ |
| 4. TE21 | Pol. 1 | f <sub>co</sub> = 7.2858 GHz  |
| 5. TE21 | Pol. 2 | $f_{co} = 7.2858 \text{ GHz}$ |
| 6. TE01 |        | f <sub>co</sub> = 9.1412 GHz  |
| 7. TM11 | Pol. 1 | $f_{co} = 9.1412 \text{ GHz}$ |
| 8. TM11 | Pol. 2 | $f_{co} = 9.1412 \text{ GHz}$ |
| 9. TE31 | Pol. 1 | $f_{co} = 10.022 \text{ GHz}$ |
| 10.TE31 | Pol. 2 | $f_{co} = 10.022 \text{ GHz}$ |
|         |        |                               |

\*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008. \*\*I. R. R. Shinton, N. Juntong, R. M. Jones: "Modal Dictionary of Cavity Modes for the Third Harmonic XFEL/FLASH Cavities", DESY note: DESY 12-053.



# Previous Results: Transmission via ACC39 String



T. Flisgen, H.-W. Glock, P. Zhang, I. R. R. Shinton, N. Baboi, R. M. Jones, and U. van Rienen: "Scattering parameters of the 3.9 GHz accelerating module in a freeelectron laser linac: A rigorous comparison between simulations and measurements", Phys. Rev. ST Accel. Beams, 17:022003, February 2014







String of cavities in ACC39 mounted in FLASH\*



Cutoff frequencies of beam pipes:

| 1. TE11 | Pol. 1 | f <sub>co</sub> = 4.3920 GHz      |
|---------|--------|-----------------------------------|
| 2. TE11 | Pol. 2 | $f_{co}^{0} = 4.3920 \text{ GHz}$ |
| 3. TM01 |        | $f_{co} = 5.7371 \text{ GHz}$     |
| 4. TE21 | Pol. 1 | $f_{co} = 7.2858 \text{ GHz}$     |
| 5. TE21 | Pol. 2 | $f_{co} = 7.2858 \text{ GHz}$     |
| 6. TE01 |        | $f_{co} = 9.1412 \text{ GHz}$     |
| 7. TM11 | Pol. 1 | $f_{co} = 9.1412 \text{ GHz}$     |
| 8. TM11 | Pol. 2 | $f_{co} = 9.1412 \text{ GHz}$     |
| 9. TE31 | Pol. 1 | $f_{co} = 10.022 \text{ GHz}$     |
| 10.TE31 | Pol. 2 | $f_{co} = 10.022 \text{ GHz}$     |
|         |        |                                   |

# Eigenmodes are determined by entire string Computation of eigenmodes is expensive

\*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008. \*\*I. R. R. Shinton, N. Juntong, R. M. Jones: "Modal Dictionary of Cavity Modes for the Third Harmonic XFEL/FLASH Cavities", DESY note: DESY 12-053.





# Concatenation Approach with Field Distributions: <u>State-Space Concatenations\*</u>

\*T. Flisgen, H.-W. Glock, and U. van Rienen: "Compact Time-Domain Models of Complex RF Structures Based on the Real Eigenmodes of Segments", IEEE Transactions on Microwave Theory and Techniques, 61(6), June 2013.



### Workflow State Space Concatenations



\*Picture courtesy E. Vogel et al.: "Status of the 3rd harmonic systems for FLASH and XFEL in summer 2008", Proc. LINAC 2008.



# Secondary Quantities of Full Structure Readily Available by Compact (Reduced Order) Model





# Secondary Quantities of Full Structure Readily Available by Compact (Reduced Order) Model





Traditio et Innovatio



# SSC in Comparison with other Coupling Methods

|                                         | SSC[1]   | CSC[2] | GSM[3]       | Mode Matching[4] | Spice[5]     | HPC[6] |  |
|-----------------------------------------|----------|--------|--------------|------------------|--------------|--------|--|
| Time Domain                             | <b>√</b> | ×      | ×            | ×                | ✓            | ✓      |  |
| Frequency Domain                        | 1        | ~      | $\checkmark$ | $\checkmark$     | $\checkmark$ | ~      |  |
| Model Order Reduction                   | ✓        | ✓      | ~            | ✓                | ✓            | ×      |  |
| Arbritrary Structures<br>and Topologies | ~        | ~      | ×            |                  | ✓            | ~      |  |
| 3D Field Information                    | <b>√</b> | •      | 0            | $\checkmark$     | ×            | ✓      |  |

[1] T. Flisgen et al., "Compact Time-Domain Models of Complex RF Structures Based on the Real Eigenmodes of Segments", IEEE MTT, 61(6), June 2013.

[2] H.-W. Glock et al., "CSC - A procedure for coupled S-parameter calculations", IEEE Trans. Magn., 38(2), March 2002.

[3] I. Shinton et al., "Large Scale Linac Simulations using a Globalised Scattering Matrix Approach ", Proc. EPAC08, Italy, 2008.

[4] W. Wessel et al., "Mode-matching analysis of general waveguide multiport junctions", IEEE MTT-S Int. Microw. Symp. Dig., June 1999, vol. 3.

[5] T. Wittig, et al. "Model order reduction for large systems in computational electromagnetics", LinAlgApp, vol. 415, no. 2–3, June 2006.

[6] e.g. F. Yaman et al., "Comparison of Eigenvalue Solvers for Large Sparse Matrix Pencils", Proc. 11th Int. Comput. Accelerator Phys. Conf., Germany, August 2012.



#### Traditio et Innovatio

# Proof of Principle: Analysis of Multi-Cavity TM01 Modes in a Concatenated Arrangement of Third Harmonic Cavities with Bellows

||000000000||||||||||||000000000|||

X-FEL Chain



### Segments of 3<sup>rd</sup> Harmonic Cavity Chain



Computations performed on an Intel Core i5-2400 CPU @ 3.10 GHz machine equipped with 8 GB RAM



#### Traditio et Innovatio

# Validation of State-Space Concatenations







# Validation using R/Q Parameter



Computations performed on an Intel Core i5-2400 CPU @ 3.10 GHz machine equipped with 8 GB RAM









17.06.2014 T. Flisgen, J. Heller and U. van Rienen







# Validation of External Q Factor



\*T. Flisgen, J. Heller, and U. van Rienen: "Time-Domain Absorbing Boundary Terminations for Waveguide Ports Based on State-Space Models ", IEEE Transactions on Magnetics, 50(2), February 2014.

\*\*B. Gustavsen et al.: "Rational approximation of frequency domain responses by vector fitting", IEEE Trans. Power Delivery, vol. 14, no. 3, July 1999.



Traditio et Innovatio





17.06.2014





# Comparison of Modal Properties in Three Different Arrangements employing SSC







#### Factor\* Comparison 'ex 10<sup>7</sup> 10<sup>6</sup> Q 10<sup>5</sup> 10<sup>4</sup> 10<sup>3</sup> 10<sup>2</sup> 7.2 7.4 7.6 7.8 8.2 7 8 f/GHz \*for second TM monopole band







# **R/Q Parameter\* Comparison**





17.06.2014



T. Flisgen, J. Heller and U. van Rienen



# **R/Q Parameter\* Comparison**



UNIVERSITÄT ROSTOCK

25





Traditio et Innovatio









17.06.2014











# **Conclusions and Outlook**





## Summary, Conclusions, and Outlook

Traditio et Innovatio

- The State-Space Concatenation approach allows for eigenmode computation of long cavity chains
- Scheme delivers (amongst others) eigenmodes, Q<sub>ext</sub>'s and R/Q's
- Scheme is successfully validated by means of straightforward computations
- Further studies based on SSC are in preparation which account for rotational symmetry breaking HOM couplers





#### Acknowledgement





EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453









### Relative Error in R/Q Parameter



UNIVERSITÄT ROSTOCK