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Abstract

The 3D electromagnetic Field Simulator GdfidL com-

putes Wakepotentials on standard CPUs with a Speed com-

parable to GPU-Based Implementations. This is achieved

via Computing only in interesting Cells, having the FD-

Coefficients in compressed Form, traversing the Grid in

a Cache-friendly Order and applying a blocked Update

Scheme which is NuMA-aware. A Dispersion optimised

Scheme is described. Fields in dispersive Materials are

computed via solving the Equations of the Electron Hulls

of the Material. Moving Mesh Computations have the Grid-

generation on the Fly.

DISPERSIVE MATERIALS

Frequency dependent Materialparameters are taken into

account by directly simulating the Dynamics of the Electron

Hull of Molecules. For each Fieldcomponent in a dispersive

Material with N Poles, the Equations of Motion (v Velocity,

Q Charge, k Spring-constant, R Damping Term, mMass of

the electron Hull) are solved
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PERFORMANCE BECAUSE OF SMALL

MEMORY FOOTPRINT

On a current MultiSocket Server, total Cost 7000 Euro,

one Timestep in a Grid of 1000 Million Cells, inclusive

lossy dispersive Materials, Impedance Boundary Condi-

tions [1] at electric Surfaces and Napoly Integration [2] typ-

ically takes less than a Second. The Preprocessing, i.e. the

Discretisation of the Materialdistribution and the Computa-

tion of the FD-Coefficients typically takes less than an Hour.

Such Performance is achieved because of several Pro-

gram Design Decisions:

• The Computation of the Material Approximation and

FD-Coefficients is not separated from the Field Com-

putation. This saves Time for writing to and reading

from Files.

• Essentially everything is parallelised using multiple

Threads working on a shared Dataset. Not only the

Field Update, but also the Material-Approximation

and the FD-Coefficients are computed using multiple

Threads.

Figure 1: Wall Currents in a 19 Cells CLiC-Section. For

this 1000 Million Cells Example, all the Pre-Processing

needed before the Time Domain Computation itself starts

takes 46 Minutes on a current medium priced Server. The

Device is decribed via CAD-Files having 90720 Triangles

in it. After performing 4000 Fieldupdates in 30 Minutes,

the Wakepotential up to s=0.1 Metres is known. Each addi-

tional Metre of Wakepotential needs additional 10000 Field-

updates computed in 75 Minutes. The Wakepotential up to

s=2 Metres then is computed within three Hours, occupying

25 GBytes of RAM. The Device is 0.26 Metres long, the

Gridspacing is 185 um. All metallic Surfaces are treated

with Impedance boundary Conditions. 5 % of the dielectric

Cells are filled with dispersive Material. 16 % of the compu-

tational Volume needs to be processed. Napoly Integration

is applied. 64 bit floating Point Numbers are used for all

Variables. The Times refer to a 4 Socket Opteron 6370P

Server, total Cost 7000 Euro, using 32 Cores at 2 GHz. On

this particular Server with 256 GByte of RAM, that De-

vice can also be handled with 12000 Million Gridcells. The

needed RAM, using 32 bit Field Components, then is 190

GByte. A single Timestep then takes 3.45 Seconds, cor-

responding to a Gross Cell Update Rate of 12 × 109/3.45

= 3500 MCells per Second. The net Cell Update Rate, as

there are only 16 % of the Cells really interesting, still is

560 MCells per Second.
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• Only Fieldcomponents are computed that are really

time dependent. Cells which are filled by perfectly con-

ducting Materials are ignored and not much Memory

is needed to handle them (32 bits per Cell for Grids up

to 2 × 109 dielectric Cells, 64 bits per Cell for larger

Grids).

• The FD-Coefficients are compressed such that the

Memory for the FD-Coefficients is just 1/24 of the

Memory for the Field Components.

• The Field Update is implemented with Tricks which

can be found in the Literature, eg:

– Non Uniform Memory Access aware Field Ac-

cess via pinning Field Segments to Threads and

Threads to CPU-Cores.

– Cache aware Field Access via blocked Schemes.

• and then some, which cannot be found in the Literature,

eg. the H & E Components are updated not in separate

Loops but in a single Loop per Block. This is another

Cache-Optimisation.

A Source-Code Fragment which demonstrates how these

Tricks might be implemented is below. If a single Thread

performs such blocked Update with the Blocks in a proper

Sequence, no additional Logic is needed. When multiple

Threads are performing such blocked Updates simultane-

ously, additional Logic for Fieldcomponents at the Borders

of the Blocks is needed.

FOR iz IN Block.iz1 .. Block.iz2 LOOP

FOR iy IN Block.iy1 .. Block.iy2 LOOP

FOR ix IN Block.ix1 .. Block.ix2 LOOP

i:= NrofCell(ix,iy,iz);

IF i>0 THEN -- Dielectric Cell.

iType:= CellType(i); -- Index of the FD-Coefficients of the Cell

ixp1:= NrofCell(ix+1,iy ,iz ); -- Number of Neighbour in +x.

iyp1:= NrofCell(ix ,iy+1,iz );

izp1:= NrofCell(ix ,iy ,iz+1);

Hds(1,i):= Hf1(1,iType) * Hds(1,i)

- Hf2(1,iType) * ( Eds(3,iyp1) - Eds(3,i) - Eds(2,izp1) + Eds(2,i) );

Hds(2,i):= Hf1(2,iType) * Hds(2,i)

- Hf2(2,iType) * ( Eds(1,izp1) - Eds(1,i) - Eds(3,ixp1) + Eds(3,i) );

Hds(3,i):= Hf1(3,iType) * Hds(3,i)

- Hf2(3,iType) * ( Eds(2,ixp1) - Eds(2,i) - Eds(1,iyp1) + Eds(1,i) );

--

-- Immediately update the Eds of that very Cell:

-- If the Blocksize is small enough, all these

-- Field-Accesses are fulfilled from the Cache.

--

ixm1:= NrofCell(ix-1,iy ,iz );

iym1:= NrofCell(ix ,iy-1,iz );

izm1:= NrofCell(ix ,iy ,iz-1);

Eds(1,i):= Ef1(1,iType) * Eds(1,i)

+ Ef2(1,iType) * ( Hds(3,i)-Hds(2,i)+Hds(2,izm1)-Hds(3,iym1) );

Eds(2,i):= Ef1(2,iType) * Eds(2,i)

+ Ef2(2,iType) * ( Hds(1,i)-Hds(3,i)+Hds(3,ixm1)-Hds(1,izm1) )

Eds(3,i):= Ef1(3,iType) * Eds(3,i)

+ Ef2(3,iType) * ( Hds(2,i)-Hds(1,i)+Hds(1,iym1)-Hds(2,ixm1) )

END IF;

END LOOP;

END LOOP;

END LOOP;

NrofCell : Integer-Array with nx*ny*nz Elements.

Eds, Hds : Real-Arrays with (3 * Number of dielectric Cells) Elements.

Celltype : Integer-Array with (Number of dielectric Cells) Elements.

Hf1, Hf2, Ef1, Ef2 : FD-Coefficients. Real-Arrays with typically

less than 30000 Elements.

If one wants to have really huge Grids, much larger

than 1000 Million Cells, one can use a Cluster of Multi-

Core/MultiSocket Machines. On a BNL-Cluster [3] Com-

putations with more than 30×109 dielectric Cells were per-

formed.

Figure 2: Fieldplots of a Linecharge in a ILC-Module, enter-

ing the second Cavity. Above: Sigma=1.3 mm, sHigh= 96

Sigma = 0.125 Metres. dx=dy=dz= Sigma/6 requires 577

Million Cells in the moving computational Volume. Be-

low: In a transversely restricted Volume. Sigma=0.3mm,

dz=Sigma/6 = 50 um, sHigh= 12 Sigma = 3.6 mm requires

340 Million Gridcells.

MOVING MESH

When computing in a moving Mesh [4], every few

Timesteps a new Gridplane is reached and the FD-

Coefficients of this Plane must be known. When using low

Dispersion Schemes [5], the Grid sensibly is such that there

are in the Order of 200 z-Planes and much more x- and y-

Planes. This implies that the FD-Coefficients of a Gridplane

are used only during as much Timesteps as it takes until that

Gridplane has left the computational Volume. That is then

after N x 200 Timesteps when using a Scheme that has a

Timestep cΔt = Δz/N . Strang-Splitting wants N=1, Yee

wants N=2. The Preparation of of a fresh Gridplane should

take less Time than it takes to advance the Field of the whole

Grid with 200 Gridplanes, otherwise that Preparation domi-

nates the total Time to get the Result. The Preparation needs

to be parallelised as well. This is implemented.

Figure 2 shows the Field in a moving computational Vol-

ume. The upper Plot is of a Volume which is ridiculously

Large, as there is no Sense in knowing the Wakepotentials

in a Range up to 100 Sigma, but not longer. Is there any

Charge in the Range 30 Sigma < s < 100 Sigma where one

would want to know how it is kicked? The lower Plot is of

a Volume with a sensible z-Length. The upper Plot is nicer,

though.

Figure 3 shows the Wakepotential of a 200 um

Linecharge in a 9 Cavity ILC-Module with Couplers and

Bellows. Using Strang-Splitting in a Grid of nx=ny=2924,

nz=200 on 32 Cores of a medium priced Server, the Compu-

tation takes three Days. 33000 Gridplanes were traversed.
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Figure 3: Wakepotential of a 9-Cell ILC-Module with Cou-

plers. Sigma= 200um, dz=Sigma/5, computed with Strang-

Splitting.

DISPERSION OPTIMISED FDTD

The first three Terms of the Taylor-Series for H (t) give

H (t + Δt/2) = H (t − Δt/2) + Δt
d
dt
H (t)

+

(Δt)3

24

(
d
dt

)3
H (t) + · · ·

Maxwells Equations: Replace the Time-Derivatives of E

& H by the spatial Derivatives of H and E. A true higher

Order FDTD-Scheme then computes the H-Values at a Time

t = (n + 1)Δt via the discretised Form of

H (n + 1/2) = H (n − 1/2) − Δt 1
μ
∇×E(n)

− (Δt)3

24

1

μ
∇×1

ε
∇× 1

μ
∇×E(n)

Such a Scheme has a Convergence of fourth Order, if the

Curl-Operators are approximated by a Scheme of Order 4.

Such higher Order spatial Schemes are problematic at ma-

terial Discontinuities. If the Curl-Operators are approxi-

mated by the standard FDTD-Curl-Operators, the resulting

Scheme is still second Order convergent as the Yee-Scheme

is, but the Directions in which zero Dispersion occurs may

be chosen. The standard Yee-Scheme has zero Dispersion

when the highest possible Timestep cΔt = Δx 1√
3

is used

and the Wave propagates in Direction of a Grid-Diagonal.

The dispersion optimised Scheme has very low Dispersion

for Waves propagating in x-, y- or z-Direction, when a

Timestep of cΔt = Δx 1
4

is used and the (Δt)3∇×3 Term

is weighted by 32/51, not 1/24. Because the Scheme is con-

structed of Curl-Operators, the resulting Fields have no spu-

rious Divergence.

Figure 4 gives the Phase-Error of the Scheme, when it is

optimised for low Error at Phi=0. Figure 5 gives the Phase

Error, when it is optimised for low Error at Phi=22 Degrees.
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Figure 4: Phase Error of the mFDTD-Scheme, when the

Rot3 Term is weighted by 32/51. The different Lines are

the Error when the Gridspacing is 1/20, 1/40, 1/80 etc of

the Wavelength.
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Figure 5: Phase Error of the mFDTD-Scheme, when the

Rot3 Term is weighted by 32/69.
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