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Abstract 
Magnets are a keystone of the ESRF upgrade 

programme. The specifications of the magnets of the 
ESRF II lattice are stringent: high gradients, extended 
Good Field Region (GFR) and vertical gaps large enough 
for the X-ray beam ports. The magnet design approach is 
presented here. Shape optimization of the magnet poles is 
systematically used. The magnet design is treated as an 
ill-posed, non linear, constrained problem. Iterative 
algorithms have been developed; the algorithms converge 
in less than 10 iterations, leading to very short 
computation time. This design method has been applied to 
high gradient quadrupole magnets. The shape 
optimization leads to original pole profiles.  

INTRODUCTION 
A major upgrade of the ESRF storage ring is under 

study. A lattice based on a 7-bent achromat is being 
developed [1]. This new lattice relies on sophisticated 
magnet designs: high gradient quadrupoles, with gradients 
up to 90 T/m, dipoles with longitudinal gradient, 
combined dipole quadrupoles, etc. In this context, it was 
necessary to go beyond the classical hyperbolic pole 
based magnets, and to look further in details. This paper 
will focus on the design of the quadrupole magnets, and 
more specifically to the optimization of their pole shape. 
The complete design of a quadrupole magnet is out of the 
scope of this article.  

Computer-aided magnet optimization was introduced 
by Halbach in 1967 [2]. Optimization methods have been 
applied to the two dimensional design of the accelerator 
magnets [3] and MRI magnets [4] since the 80’s. 
Hyperbolic poles with smooth optimized shims have been 
used in some of the 3rd generation light sources [5]; a 
good review of mathematical optimization techniques for 
magnet design has been written by Russenschuck [6]. 
User friendly optimization toolboxes are now included in 
some commercially available magnet design codes. 

The magnet design method developed at the ESRF 
combines the Radia software [7], which is a boundary 
integral method for field computations, with a nonlinear 
descent method and a simple parameterization of the pole 
shapes; details are given in the next sections. The main 
advantage of this method is its short computation time. 
On top of that, some operations in the optimization 
routine can be easily parallelized, leading to extremely 
time efficient pole shape optimization. 

POLE SHAPE OPTIMIZATION 
Simulation Tools  

A few blocks are needed for pole shape optimization: a 
magnetic model of the object under design, allowing 
magnetic field computations, a set of parameters for this 

model, and a set of optimization functions. The 
parameters and the optimization functions have been 
described in Mathematica language. The Radia magnet 
simulation software is used for the field computation. It is 
interfaced with Mathematica. The Radia software has 
been developed in the ESRF Insertion Device lab and has 
been largely used for undulator, wiggler and multipole 
magnet design [8-11]. This software does not rely on a 
Finite Element Method as most of the field computation 
codes do, but on a Boundary Integral Method. The 
magnets are described as a set of field sources, i.e. 
magnetization or currents. In the present version of Radia, 
elementary magnetized objects have a uniform 
magnetization and are modeled as equivalent magnetic 
charges. The magnetic field and its integral along a 
straight line can be computed for each field source, at any 
point, using analytical formulae. The Radia software is 
particularly time efficient for integrated field 
computations, since the integrated field is computed 
directly from each field source, and not as the sum of the 
fields computed at a large number of points. Moreover, a 
good estimation of the integrated field can be obtained 
with a small number of longitudinal elements. This makes 
it a good candidate for 3D accelerator magnet 
optimization. 

Regularized Descent Method 
Let us assume that the magnet has been partially 

optimized, i.e. its main dimensions, bore radius, coils, 
outer pole shape (excluding the “hyperbolic” part), etc. 
are set. The problem then is to find a convenient shape for 
the pole, leading to the best field quality at some specified 
working points. As the optimization procedure starts with 
a “not so bad” magnet, it is assumed that finding the local 
minimum of a cost function is sufficient. This assumption 
is of prior importance because it allows us to restrict our 
study to descent methods and to exclude time consuming 
metaheuristics such as simulated annealing or genetic 
algorithms.  

The first step towards an optimization method is to 
define a cost function. Harmonic field expansions are an 
efficient way to express the field strengths and the field 
errors with a small number of coefficients. It is a common 
use to define a complex 2D magnetic field Y XB B iB

where XB is the transverse component and YB the vertical 
component of the field. In 3D magnetic modeling, XB and

YB are integrated other the longitudinal direction. For this 
2D field and outside the iron material, the Maxwell 
equations are equivalent to the Cauchy-Riemann 
equations and the complex field B  is an analytic function
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where z x i y , 0  is the reference radius, and 
, 0,1N Na b for the main multipole; the multipole 

strength is 1
0

N
NB . The na and nb coefficients can be 

determined from the Fourier expansion of the field along 
a circle; they are commonly referred to as circular 
multipole coefficients. Even if circular multipoles are 
widely used by magnet designers, there exist alternative 
definitions of field multipoles. In particular, elliptic 
multipoles [12] are of interest for field optimization over 
ellipic Good Field Region (GFR) which may be 
encountered in dipole or combined function magnet 
design. If one restricts the summation in Eq. (1) to its first 
terms, one obtains 

                         B = TC                                      
where B  is the vector which contains the field computed 
at mz , with 1 m M , C contains the N first complex 
multipole coefficients, and T  is a M N matrix. The  

mnT coefficients depends on the points mz , on the field 
components computed (i.e. transverse and vertical, or 
radial and tangential, etc.) and of the type of multipole 
expansion used (mainly circular or elliptic). If the field is 
known at points mz , the multipole coefficients are 
obtained from the pseudoinverse +T of the matrix T . 
(This matrix formalism was originally developed for 
magnetic measurements, see the reference [13] for 
details.)  

Let 0C be a target multipole vector: for a quadrupole 
and with circular multipoles, one gets 20, ,0 0 .B0C  

An error vector can be defined as +
0 0= C - C = T B - C . 

The norm  of this vector is a good cost function for 
magnet optimization. 

Without constraints, pole shape optimization 
algorithms tend to enlarge the poles outside acceptable 
values; this may cause pole gap closure or other issues. A 
simple way to avoid problems of this kind is to implement 
a barrier function which has a negligible value for pole 
gap above a user defined limit, and a large value in the 
other case. One just has to stack this value in the error 
vector . 

This optimization problem is non-linear: the field 
variation at a given point doesn’t scale with the variation 
of the pole shape. An intuitive approach consists of 
linearizing the problem (i.e. computing the Jacobi 
matrix), and to iterate a few times. This corresponds to 
the so-called Gauss-Newton algorithm. 

The cost function 2  is minimized with a modified 
Gauss-Newton algorithm. First, let n  be a generic 
magnet parameter, and  the vector of parameters to 
optimize (a simple and efficient parameterization of the 
pole profile will be suggested in the coming paragraphs). 
The coefficients of the Jacobi matrix J  are 

mn m nJ . The kth iteration of the Gauss-Newton 
algorithm is  

                          
-1T T

k +1 k k k k k

+
k k k

= - J J J

= - J
      (2)              

where +
kJ  is the pseudoinverse of the Jacobi matrix at 

iteration k.  
If one of the parameters is modified, one can assume 

that the field variations along the boundary of the GFR 
will be smooth: a spike on the pole profile translates to a 
“bump” on the field amplitude. It makes the Jacobi matrix 
ill-conditioned, and the Gauss-Newton algorithm diverges 
rapidly. The Singular Value Decomposition is a powerful 
tool to overcome this problem. The matrix J can be 
written as 

                                  
i

i

T

T
i i

J = U V
u v  

where 1 2 ... 0 are the singular values of J , 

ij
T

i ju u and ij
T

i jv v . A simple way to compute a 
friendly, regularized pseudoinverse of J is to truncate its 
SVD: + + TJ = V U where + is a diagonal matrix with 
diagonal elements 1 i if 1i r , 0 elsewhere. In 
practice, good pole shape optimization results are 
obtained with 3 210 10r . Equation (2) becomes 

+r
k +1 k k k= - J ,  

where +rJ  denotes the regularized pseudoinverse of J . 
(The Tichonov regularization is another classical 
approach. In that case, the + diagonal elements are 
multiplied by 2 2 2

i i , where is a regularization 
parameter which constrains the norm of the solution. The 
widely-used Levenberg-Marquard algorithm relies on 
Tichonov regularization. See for instance  reference [14].) 

Pole Profile Parameters 
A natural way to parameterize the pole profile is to 

introduce deviations from the “standard” hyperbolic 
profile: k k kX x and k k kY y , where 1 k K  
and 2 2k ky x . These deviations can be expressed as 
a sum of smooth functions, e.g. Legendre polynomials: 

1
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where l  and l are the pole shape parameters and the lP  
are the Legendre polynomials. These expressions for the 
pole deviations have some advantages. The number of 
parameters to optimize does not depend on the 
discretization of the profile, but on the polynomial order 
of the pole deviations, i.e. on the smoothness of the poles. 
The pole smoothness is handled by the maximum 
polynomial order L . Moreover, it is observed that this 
parameterization leads to a better conditioning of the 
Jacobi matrix.  
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QUADRUPOLE MAGNETS 
Context 

The high gradient quadrupoles designed for the ESRF 
II lattice have a nominal gradient of almost 90 T/m, with 
gradient errors 310G G within a 7 mm radius GFR. 
The minimum pole gap was set to 11 mm, leaving space 
for the vacuum chambers and the X-ray ports. The 
magnet length is 500 mm and the material is low carbon 
steel AISI 1006. 

As the tuning range of these magnets is 5 %, the field 
was optimized at only one excitation.  

The field quality criterion is defined from the circular 
integrated field harmonics, as described above. The 
magnet is modelled in 3D with the Radia software. The 
end effects have an impact on the integrated multipoles, 
and this effect is corrected by the pole shape, all along the 
magnet. The optimization of the pole ends is out of the 
scope of this paper; it is clear that the conventional pole 
chamfering does not work with non-hyperbolic (and 
possibly non-convex) pole profiles. 

Optimization Results 
Optimized quadrupole profiles have been computed in 

two cases: with a weak constraint on the pole gap 
(vertical gap above 9 mm) and with a stronger constraint 
(gap above 11 mm). The pole profiles are shown in 
figure 1. 

Figure 1: Optimized pole shape. Solid line: 11 mm gap 
between poles. Dotted line: 8 mm gap between poles. 
Dashed line: Good Field Region. For the 11 mm gap 
profile, the main systematic multipoles are 

4
6 0.8810b and 4

10 0.2410b  at 7 mm. The gradient 
(integrated gradient normalized by magnetic length) is 

89.3 T/m.G  
 
The computations have been done on the ESRF 

computer cluster with 10 CPUs. A very good field quality 
was obtained with 5 iterations and 10 parameters ( 5L

for horizontal and vertical displacements). With a 
reasonable magnet discretization, the computation time 
was 15 minutes. The computation time would be more or 
less 150 minutes on a single CPU, which is still short for 
a 3D optimization. The optimized pole profile has been 
cross-checked by simulations with an increased number 
of longitudinal elements. Table 1 shows that the errors are 
stable with finer longitudinal segmentations. 
Table 1: Computation Time and Norm of the Multipole 
Errors at 7 mm, for an Increasing Number of Longitudinal 
Elements 

Number of 
longitudinal 
elements 

Computation 
time 

1
20 2

2

1
n

n

b  

12 1 min 59 s 0.82 10–4 
20 4 min 41 s 1.02 10–4 
40 54 min 24 s 1.10 10–4 

CONCLUSION 
Pole shape optimization is not a new idea. Yet, 

advances in field computations and optimization 
algorithms, combined with the development of computer 
clusters, open the way to systematic 3D optimization. The 
development of very fast, user friendly 3D models and 
optimizers changes the design approach. It is now 
possible for a designer to be field quality carefree, and to 
check almost immediately how pole shaping decreases the 
higher order multipoles. 
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