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Abstract

Two techniques to perform Beam-Based Alignment are

presented. These techniques are intended for the difficult

case arising in circular accelerators characterized by a non-

linear dependence of the Response Matrix on misalignments

of the magnetic sources, where the standard approach fails.

The developed algorithms have been successfully used to

reconstruct misalignments in the transverse position of the

quadrupoles installed in the main rings of the DAΦNE col-

lider.

INTRODUCTION

We call Beam-Based Alignment (BBA) any procedure

aiming at determining the misalignment of the magnetic

elements in a particle accelerator, exploiting the effects those

misalignments induce on the beam dynamics. Such effects

are usually encoded in a Response Matrix (RM) specific

for the class of elements taken into account. The standard

BBA approach [1] [2]consists of a linear modelization of the

dependence of the RM entries on the misalignments and then

in the inversion of such model. In order to improve numeric

stability, a Singular Value Decomposition (SVD) can be

applied to the linear dependance of the misalignements on

the RM allowing a cut on the largest singular values.

This approach is very effective in the case of linear accel-

erators and circular with regular lattices with widely spaced,

loosely coupled magnetic elements, but it performs poorly

when compact circular accelerators are concerned. In fact

the magnet proximity and multi-turn effects introduce signif-

icant higher-order dependencies that render the linear mod-

elization ineffective. We analyze the case of the DAΦNE

rings [3] [4], in which both conditions the presented condi-

tions occurr and linear BBA is not applicable.

We propose two nonlinear BBA algorithms. The first

is intended to deal with situations in which nonlinearities

are expected to compromise the standard approach, but are

still treatable with correcting tweaks. We will refer to it

as Surrogated Beam-Based Alignment. The second one is

an approach that, at the expense of the computational cost,

is able to reconstruct misalignments in situations of strong

nonlinearity. We shall refer to it as the Sushi Algorithm.

In both cases we will treat the accelerator model as an

oracle that, given a set of misalignments, will predict the

resulting RM. In the presented situation we want to recon-

struct the transverse misalignment of the DAΦNE positron

ring quadrupoles. The oracle is implemented via a series

of MadX simulations [5]: in order to compile the RM, 42

quadrupole currents are varied with a 2 Ampere kick and

then, in correspondence of the 47 beam position monitors,

the difference in transverse beam position orbit is measured.

Despite of the specific simulator adopted in this specific

study, the aim of this work is to provide black-box techniques

that will work independently of the specific simulation tech-

nique chosen - given that the oracle is sufficiently adherent

to the real beam dynamics.

SURROGATE BEAM-BASED ALIGNMENT

As anticipated we treat the accelerator physical model

as an oracle that, given a misalignment for each magnetic

component of the machine, is able to predict the resulting

RM. In this perspective the BBA task becomes equivalent

to a numerically stable inversion of this black-box, which is

to say to determine which set of misalignments provides the

response matrix lying closer to the experimentally measured

one. We shall assume that evaluation of a single simulated

RM presents a fairly high computational cost, e.g. a dozen

of seconds on a state-of-art personal computer.

Surrogate BBA consists in approximating the oracle with

a function allowing an analytic or a simple numerical inver-

sion, which we call the surrogate function. The surrogate

function should be at the same time closely matching the

original oracle, fast to compute and easy to invert. Thus it

should be selected specifically for each case.

Surrogate BBA proves to effectively deliver the desired

results for the MadX model of the DAΦNE positron ring

in the October 2013 run configuration, while standard tech-

niques fail. In this specific case misalignments are expected

to range in the order of ≈ 100 µm. Under this hypothesis

adding the quadratic terms to the linear model provides a

suitable surrogate function that differs from the original ora-

cle less than a part in 103 in Fröbenius norm. Namely, letting

y be a vector enlisting the transverse misalignments of the

quadrupoles, and Mi j (y) the corresponding RM obtained

through the oracle, then we use as the surrogate function

M̃i j (y) a sort of second order Taylor expansion in y:

Mi j (y) ≈ K
(0)

i j
+ K

(1)

i j
· y + ty K

(2)

i j
y ≡ M̃i j (y). (1)

We found by numeric inspection that for misalignments up

to ≈ 100 µm we have

| | M̃ (y) − M (y) | |

| | M (y) | |
. 10−3. (2)

The surrogate function coefficients K
(0)

i j
, K

(1)

i j
and K

(2)

i j
are

obtained by sampling the oracle over a halo (a sample set) of

misalignments and then performing a best linear fit of M̃ (y)

to M (y), in the specified case we used a halo of 14 Ksamples.

Although the numbero of coefficients of the K
(2)

i j
in our
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case range in the order of tens of millions, the model can

be fitted separately for each RM entry i j, reducing the fit

cost to the inversion of a single 14K by 14K matrix. By

carefully selecting the sampled halo points, the fit matrix can

be rendered sparse; in our case we achieved a 98% sparsity

making negligible the overall fit cost.

Let Mexp be the experimental RM measured on the col-

lider. We are bound to find the value of y that minimizes the

quality function:

�
�
�
� M̃ (y) − Mexp �

�
�
�
2
. (3)

This minimization cannot be performed in closed formula,

but can be easily achieved numerically, provided that an

effective algorithm is used. The best way we found to ob-

tain such minimization is to use a quasi-Newton iterative

method, with both the gradient and the Hessian matrix of the

function computed in closed formula, mixed with a chain of

prospecting algorithms.

To describe the action of the prospectors, let yi be the i-th

partial result of the minimization algorithm. The n-th level

prospector will step in every 2n · k iterations, with k ∈ N0,

substituting to y2n ·k the value of y∗ in the set

{

t · y2n ·(k−1) + (1 − t) · y2n ·(k−1)
�
� t ∈ R

}

(4)

which minimizes M̃i j (y∗).

Since in our case any restriction of the quality function

(3) along a specific direction results in a quartic polynomial

whose coefficients can be computed in closed formula, the

minimizations required by the prospectors can be provided

quickly and in closed formula too.

Surrogate BBA in the illustrated case proved to be numer-

ically stable and provided two solid digits in the inversion.

The algorithm was tested against matrices generated through

the oracle with small random noise added to them, simu-

lating experimental measurement errors, and it was shown

that these errors do not get amplified significantly by the

inversion algorithm.

THE SUSHI ALGORITHM

Finding a suitable surrogate function becomes a nontrivial

task when in the range of the expected misalignments a

series expansion cannot provide an adherent approximation

of the oracle. We found that this is indeed the case of the

DAΦNE electron ring in the February 2014 configuration,

as simulated with MadX. Again we will try to reconstruct

the transverse misalignment of the ring quadrupoles, but

this time we expect them to be in the order of ≈ 500 µm.

Since even with smaller misalignments (≈ 100 µm) higher

order terms kick in making quadratic surrogacy unfeasible,

either a different surrogate function or a radically dissimilar

approach needs to be employed.

Choosing the second path we developed what we called

the Sushi algorithm. The main idea consists in defining a hy-

pervolume in the misalignment space in which the solution is

expected to be and then, subsequently, to exploit occasional

correlations to cut out sections of this hypervolume until the

desired accuracy is obtained; pictorially resembling in our

view the art of raw fish slicing in Japanese cuisine.

Before we illustrate the core of the algorithm we will

introduce a form of preprocessing of the RM entries that

heavily reduces the computational cost of the algorithm and

provides a slight increase in numerical stability. Since there

is no guarantee that the characterization we observed in the

RMs has a general validity this preprocessing step can be

skipped and the whole RM can be employed to feed the

Sushi algorithm.

Response Matrix Preprocessing
Statistic analysis of the RMs obtained trough the simulator

showed strong linear correlations between many of the RM

entries. To characterize such dependency we have ran the

oracle on 20 thousand randomly chosen misalignments in

the range of interest.

For each ordered pair of RM entries we computed a least

square linear fit of one entry as a function of the other; then

we defined a distance between RM entries as the least χ2 in

the two fit possibilities. We then subdivided the response

matrix entries in families using a clusterization algorithm -

each family containing entries which are all approximately

linearly proportional - then from each family we extracted a

representative. Namely, the representative is the entry that

minimizes the maximum distance with any other member

of its family.

Fit results showed that the complete RM is well approxi-

mated by a linear combination of the representative entries.

We call the linear space generated by these linear combi-

nations the generatrix subspace. Common sense suggests

that restricting our analysis to these representatives of the

RM entries will reduce computational costs without signifi-

cantly reducing the information content with respect to the

complete RM. Therefore it is convenient to modify the ex-

perimental RM so that it will lie on the generatrix subspace:

this can be achieved by performing a linear fit to deduce

the values of the representatives that best characterize the

experimental RM, which is equivalent to say that we project

the RM on the generatrix subspace. After precomputing the

linear fit matrix, this projection reduces to a simple matrix

multiplication, which can be included in the oracle black-

box.

In our case we used a number of families equal to four

times the number of degrees of freedom of the misaligne-

ment we want to reconstruct (i.e. eight-fold the number of

quadrupoles in the ring). This proved to be a suitable choice,

since in this way the representatives are able to characterize

the RMs with a tolerance inferior to 1 part in 103 in norm,

while reducing the number of entries of the response matrix

by a factor 10; since part of the Sushi algorithm scales with

the cube of the RM entry count, this results in a significant

speedup. The procedure provides also good numeric stabil-

ity on the projected matrix: since the generatrix subspace

is heavily less dimensional than the whole RM parameter

space, a random variation added to a RM will be nearly nor-
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mal to the generatrix and most of the error will cancel out

in the projection.

The Algorithm Core
Sushi is an iterative algorithm that characterizes the par-

tial solution of a BBA problem with a probability distribution

function (p.d.f.) on the possible misalignments and that re-

peatedly performs a bayesian update of the p.d.f., narrowing

it in order to determine with greater precision the location

of the solution.

The p.d.f. describing the partial solution is defined as the

product of uni-variate gaussian distributions (each with a

specified mean and variance), one for each of the misalign-

ment we need to reconstruct. At the beginning of the compu-

tation a prior distribution derived by general knowledge of

the experimental apparatus is provided to the algorithm. For

example, in our case we started from a multivariate gaussian

p.d.f. for the misalignments, centered in y = 0 and with

uniform width σ = 500 µm.

At each algorithm step two random sets of misalignments

are drawn using the p.d.f. adopted at the current step. The

oracle is ran on these misalignments producing two datasets

that we will call α and β; each point p in both these datasets

consists in pair (yp ,Mp ), i.e. a misalignment together with

the corresponding RM. The α dataset is used to obtain a lin-

ear model for the misalignment and the β dataset to estimate

the variance of the resulting p.d.f., as we now clarify.

We use the alpha dataset to find the best linear depen-

dence of the misalignments, yp , as a function of the RM,

Mp . Namely, writing

yp = F ·Mp + ep (5)

we want to find the fit matrix F which minimizes the sum

of the residues squared
∑

p | |ep | |
2.

A new proposed p.d.f. for the next iterative step is then

computed. The mean value of the new gaussian p.d.f. is

given by µ∗ ≡ F ·Mexp. The variance for each misalign-

ment is determined by applying the fit matrix to the entire

β dataset and computing the residues by subtracting the re-

constructed misalignment (F ·Mp) from the one provided

to the oracle when the β dataset was computed (yp). We

suggest the use of quantiles to determine the width of the

resulting distribution, since the nonlinear behaviour of the

oracle can force other estimators to converge very slowly

and requires the use of unnecessarily large sample spaces.

Moreover we’d like to stress that it is mandatory that dataset

β is completely independent from dataset α: if we used the

points from dataset α to compute the variance of the p.d.f.,

this would give rise to spurious correlations, spoiling the

correctness of the procedure.

The proposal p.d.f. is then merged with the prior distribu-

tion. This can be done in two ways: the prior distribution

can be replaced by the proposed distribution, or a bayesian

merge can be performed. In the second case, denoting with

µi and σi the mean and variance estimated at the i-th step

(for each misalignment), and with µ∗ and σ∗ the ones ex-

tracted from the α and β datasets, we adopt the following

formula:

µi+1 = σi+1 ·

(

µi

σi
+

µ∗

σ∗

)

σi+1 =

(

1

σi
+

1

σ∗

)−1

. (6)

Both approaches have their advantages. The former is more

mathematically sound and provides more cautious state-

ments on the location of the solution, but might stall if the

prior distribution width is overestimated. The latter will

force the algorithm to converge and will avoid stalling, but

will produce wrong results if the problem is intrinsically

insolvable.

Cut on Singular Values

We found that the algorithm core might require modifi-

cations in order to avoid numeric instability, and to better

account for the measurement errors that the experimental

determination of the RM inevitably entails. Specifically,

at each step we have to factor with SVD the fit matrix F

and remove the higher singular values to provide numerical

stability.

The mean values µ∗ for the misalignment p.d.f. is ob-

tained by applying the fit matrix, partially deprived of its

singular values, to the experimental matrix; the variances

σ∗ are extracted in the same way as above delineated.

With these precautions we have shown that Sushi algo-

rithm can reconstruct misalignments up to ≈ 500 µm even

when a random gaussian error is added to the machine model.

CONCLUSIONS

We have shown how to perform non-linear BBA by invert-

ing multidimensional non-linear functions, method that, as

far as we know, has never been tested before. However the

numerical techniques here presented are general and can be

applied to any multi-dimensional inversion problem. More-

over we developed the Sushi algorithm which turned out to

be able to solve an inversion problem that we found to be

intractable with any other numerical method known to us.
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