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Abstract

To represent the space charge forces of beam a software

based on analytical models for space charge distributions

was developed. Special algorithm for predictor-corrector

method for beam map evaluation scheme including the space

charge forces were used. This method allows us to evaluate

the map along the reference trajectory and to analyze beam

envelope dynamics. In three dimensional models the num-

ber of computing resources we use is significant. For this

purpose graphical processors are used. This software is a

part of Virtual Accelerator concept which is considered as

a set of services and tools of modeling beam dynamics in

accelerators on distributed computing resources.

INTRODUCTION

It is well known that the envelope equations for continu-

ous beam with uniform charge density and elliptical cross-

section were first derived by Kapchinsky and Vladimirsky

(KV). This very useful result has been put into different

approaches to charged beams description with any charge

distribution with elliptical symmetry. More over this is also

true in practice for three dimensional bunched beams with

ellipsoidal symmetry. The utility of this rms approach was

first demonstrated by Lapostolle for stationary distributions.

Subsequently, Gluckstern [1] proved that rms version of

KV-equations remain valid for all continuous beams with

ellipsoidal form. Here we describe the approach based on

these ideas for description of nonlinear space charge forces

using ellipsoidal presentation of a space charge distribution.

The purpose of analytical models is connected with necessity

to improve the efficiency of numerical calculations (espe-

cially with the use of parallel and distributed computing

systems), and on the other with providing a detailed analysis

of the impact on the beam dynamics of various parameters

(both the control system itself and the beam parameters). In

this paper, we describe an approach to construct analytical

expressions for the electric field produced by the beam par-

ticles. These expressions may be derived using the matrix

formalism for a trajectory analysis [2], and in terms of the

envelope of the beam and/or the distribution function (in

accordance with the Vlasov-Maxwell equations).

CHARGE DISTRIBUTION DENSITY

In this paper, we develop the main conditions for the

field, generated by the beam, but taking into account the
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three-dimensional distribution of space charge in a bunched

beam. It should be noted that a similar approach in the

two-dimensional case allowed us to not only build a general

analytical expression for a wide class of distributions of the

beam, but also to integrate the expressions in the appropriate

implementation of the perturbation theory, commonly used

in beam physics. In this paper, we focus on how the use of

the matrix formalism [2] for Lie algebraic methods [3] in the

event of calculating the self-field of the beam. This approach

allows not only to carry out numerical experiments, but also

to provide accurate analysis of the impact of different effects

with the use of ready-made modules. As in [2] we use the

method of calculation in symbolic form the components of

the tension in two dimensions, for various models of the

distribution of the transverse charge density ρ(x , y), where

x , y are transverse coordinates in according to the Ferrers’a

integrals technology [4]. As a result, the expressions for

the electric field of the beam we form the total field as the

sum of external and the self-field of the beam, which can be

written as

~E(x , y, s) =

∞
∑

k=1

(

~Ek
out(x , y, s) + ~Ek

self(x , y, s)
)

, (1)

where ~Ek contains the members of k-th order according

the variables x , y, correspondingly. Similar presentation

allows us to embed the total field in the general equation

describing the dynamics of the particles in accordance with

the matrix formalism

d ~X

ds
=

∞
∑

k=1

(

P
[1k]
out (s) + P

[1k]

self
(s)

)

~X [k] , (2)

where ~X [k] the vector of k-th phase moments, P1k(t) -

matrices size of d[n, k] =
(

n+k−1
k

)

[2].

• Trajectory analysis. In this case the beam is presented

as a particles assemble and can be written using the

following matrix X N
= { ~X1 , . . . , ~X N }, where ~X k is

a phase vector of k-th particle and N is a number of

particles.

• Beam envelope dynamics. In this case the beam is de-

scribed in the terms of envelope matrices [2]. See figure

1 for example.

• Distribution function dynamics. In this case one

present the beam in the terms of a distribution func-

tion, which satisfies to the Maxwell-Vlasov equations

system.
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According to the matrix formalism, we compare the evo-

lution operator and the endless-dimensional matrix

M = (M11 . . .M1k . . .),

with the help of the block-matrices and using

σ11(t) =

∞
∑

l=1

∞
∑

k=1

M1l(t |t)σlk
0 (M1k(t |t)),

calculate the root-mean-square matrix of envelopes and

recognize the current distribution function to calculate the

own fields of space charge.

Figure 1: Envelope description

Survey of Distributions

Before speaking about predictor- corrector method we

should say some words about the distribution functions. First

of all we consider elliptical beam that’s why κ
2
= X ∗AX is

used ( X = (x , y, x′, y′)∗ - phase coordinates vector, A - posi-

tively definite symmetric matrix). Currently the distribution

function can be presented as:

• Uniform distibution :

ϕ(κ2) =
2
√

det A

π2
Θ(1 − κ

2),Θ(x) =

{

1, x ≥ 0,

0, x < 0.

• VK-distribution:

ϕ(κ2) =

√
det A

π2
δ(1 − κ

2).

• Normal distribution:

ϕ(κ2) =

√
det A

4π2
exp

(

−κ
2

2

)

Other disributions also exist, they will be described later,

but these three are interesting in terms of charge distribution

density in real space

ρ(x , y) =

∫

R2

f (x , x′, y, y′)dx′dy′. (3)

Using 3 for three types of distribution function of phase

frequency, we get density of charge in real space:

• Uniform distibution :

ρ(x , y) =
2qN0

π

√

det A

A22
(1 − κ

2
r )Θ(1 − κ

2
r ) (4)

• VK-distribution:

ρ(x , y) =
qN0

π

√

det A

A22
Θ(1 − κ

2
r ) (5)

• Normal distribution:

ρ(x , y) =
2qN0

2π

√

det A

A22
exp

(

−κ
2

2

)

(6)

Taking away indetermination in 4 - 6 and assuming current

intensity as a constant

I(s, t) = υ0

∫

R2

ρ(x , y, s, t)dxdy = const ,

we get five types of distribution (three discussed above and

two more):

• linear: ρ1(x , y) = ρ0(1 − 4κ2/9)Θ(1 − 4κ2/9));

• uniform: ρ2(x , y) = ρ0Θ(1 − κ
2);

• normal: ρ3(x , y) = ρ0exp(−α2
3
κ

2), α3 = − π
2ier f (i)

.

Where er f x =
∫ x

0
exp(−t2/2)dt - probability integral.

• quadratic: ρ4(x , y) = ρ0(1−(4/5)4
κ

4)Θ(1−(4/5)4
κ

4);

• cosinusoidal: ρ5(x , y) = ρ0cos2(πα2
5
κ

2)Θ(1 − α2
5
κ

2).

Where α5 calculates with Frenel integral.

The whole solution algorithm - Predictor-Corrector

method was described in [8]

PROFIT OF PARALLELIZATION

The natural parallel and distributed structures of beam

physics problems allow using parallel and distributed com-

puter systems (see works [5–7]). But usual approaches

based on traditional numerical methods demand using the

resources of supercomputers. This leads to impossibility of

using such multiprocessing systems as computational clus-

ters. There are two classes of problems in beam physics

which demand very extensive computer resources. The first

class includes long-time evolution problems; the second is

concerned with the computer realization of optimization

procedures for beam lines. Examples of the first type of

problem include multi-turn injection and extraction of the

beam in circular accelerators. Usually, these problems do

not consider space charge effects. For advanced applications

it is essential to study beam dynamics in high-intensity ac-

celerators. Such machines are characterized by large beam

currents and by very stringent uncontrolled beam loss re-

quirements. An additional difficulty of numerical simulation
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is connected with long-time beam evolution that requires the

computation of hundreds of thousands or millions of turns.

It requires the use of high-performance computers for beam

evolution study. The problems of similar multi-turn evolu-

tion such as transverse stability with nonlinear space charge,

uncontrolled beam losses due to space-charge-induced halo

generation, etc. can also be mentioned. These problems are

peculiar to modern high-intensity machines and require care-

ful investigations of long-time evolution effects. From the

computational point of view there are some problems related

to the choice of models for beams with space charge [8], the

presentation form of the beam propagator, and so on. As

it was said above matrix formalism is a high-performance

mapping approach for ODE solving. It allows to present

solution of the system in the following form

X =

k
∑

i=0

R1i(t)X
[i]

0

where R1i are numerical matrices. So this approach can

be easy implemented in parallel code. Due to the fact that

only matrix multiplication and addition are used, GPU pro-

gramming is especially suitable for this purpose [9]. The

research has shown that there is no great benefit via paral-

lelization of computational code for one particle by using

GPU. In this case overhead on data sending is significant.

On the other hand, matrix formalism allows to process a set

of initial points, where parallelization is more preferable.

Let us introduce a set of initial particle

M = (X1
0 X2

0 . . . X
p) (7)

According to equation 7 the resulting points can be calcu-

lated

M =

k
∑

i=0

R1i(t)((X1
0 )[i](X2

0 )[i] . . . (X
p

0
)[i]).

Note that the sizes of matrices in this equation are much

greater than in 7 when a set of initial particles is quite large.

The use of matrix formalism allows to build some impor-

tant criteria in terms of matrix elements. This significantly

reduces computational time.

We evaluate the effectiveness of using data parallelism

to program GPUs by providing results for a set of compute-

intensive benchmarks. All calculations will be tested on a

hybrid cluster of SPbSU computing center. Its nodes contain

a NVIDIA Tesla S2050 system that was developed specif-

ically as a GPGPU unit [9]. For our goal we are going to

choose OpenCL and CUDA technology [10].

The research have shown that there is no great benefits

via parallelization of computational code for one particle by

using only GPU. In this case overhead on data sending is

significant. On the other hand matrix formalism allows to

process a set of the initial points, where parallelization is

more preferably.

CONCLUSION

Our challenge is to develop an algorithm for solving the

problem of accounting space-charge forces in general and

compare this algorithm with other methods. After that, it is

necessary to provide computer simulation. It allows simulate

both long-term evolution of a set of particles, and evaluating

based on envelope description. As it was said above the

method can be implemented in parallel codes on GPU+CPU

hybrid Cluster. That is why the future development of the

research also can be based on writing software using differ-

ent parallel techniques and complete implementation of the

described approaches.
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