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Abstract

Experiments on EMMA have shown that with rapid accel-

eration a linear non-scaling FFAG can accelerate through sev-

eral integer tunes without detrimental effects on the beam [1].

Proton and ion applications such as hadron therapy will nec-

essarily have a slower acceleration rate, so their feasibility

depends on how harmful resonance crossing is in this regime.

A simple and useful tool to answer such fundamental ques-

tions is the Simulator of Particle Orbit Dynamics (S-POD)

linear Paul trap (LPT) at Hiroshima University, which can

be set up to simulate the dynamics of a beam in an FFAG.

We report here results of experiments to explore different

resonance crossing speeds, quantify beam loss and study

nonlinear effects. We also discuss the implications of these

experimental results in terms of limits on acceptable accel-

eration rates and alignment errors.

INTRODUCTION

In a linear non-scaling FFAG the tune varies, typically

by several integers, over the momentum range. This is not

a problem when acceleration is rapid, as demonstrated in

EMMA [1]. Indeed the large dynamic aperture allowed by

the linear magnets, combined with the use of the serpen-

tine channel for acceleration, make this an ideal device for

muons. However, when acceleration is slower (for instance

in the case of protons), the crossing of resonances can lead

to unacceptably high orbit distortion and beam loss. Conse-

quently, it is of interest to study the effects of much slower

crossing rates than can be achieved with the current EMMA

setup. Here we use a LPT to simulate EMMA and study

resonance crossing.

In a LPT, a non-neutral plasma is confined radially by

applying a sinusoidal voltage to four electrodes to create a rf

quadrupole field and axially by applying a static voltage to

two end plates to create a potential well. The S-POD device

is about 20cm in length with a 1 cm aperture and is operated

at 1 MHz. Argon-40 is usually chosen for the plasma. For

this study, a relatively low number of ions are confined to

ensure space-charge effects are negligible. After performing

an experiment, the remaining number of ions is measured

using a micro-channel plate (MCP) positioned at one end of

the trap.

The Hamiltonian of an ideal LPT in the low intensity limit

is given by
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p2
x + p2
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+
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κr f (τ)

(

x2 − y
2
)

(1)

where κr f (τ), the focusing waveform applied to the plasma,

is proportional to the rf voltage applied to the electrodes and

the independent variable τ = ct. The above Hamiltonian is

identical in form to that describing the transverse dynamics

of a beam in a focusing channel.

The linear non-scaling FFAG EMMA consists of 42 cells

each containing a quadrupole doublet. Each quadrupole is

offset horizontally to provide a dipole component to bend

the beam. The tune varies by about 7 integers over the

momentum range in both transverse planes.

S-POD can be set up to simulate EMMA simply by choos-

ing the appropriate focusing waveform κr f (τ). Each pe-

riod of the sinusoidal focusing waveform shown in Fig. 1

represents a cell in EMMA. The fact that the sinusoid ap-

proximates a FODO rather than a doublet structure is not

important for this study. The rf voltage is chosen to set the

tune of the device over a large range as in EMMA.

In one type of experiment, the tune can be kept constant

for a certain number of focusing periods, the plasma ex-

tracted and the number of ions measured. By repeating

for a range of tunes, the stopband distribution can be mea-

sured. Alternatively by ramping the rf voltage the tune can

be monotonically increased or decreased and the number

of ions measured as before. This allows resonance crossing

experiments to be conducted.

Figure 1: Illustration of the rf quadrupole waveform that

simulates a single turn in EMMA. A dipole perturbation in

two forms is also shown; namely, (a) a piecewise constant

voltage emulating the local dipole field error and (b) a sinu-

soidally varying voltage corresponding to a single Fourier

harmonic of the pulse voltage in (a).
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STOPBAND MEASUREMENT

The stopband distribution was previously measured as

described above for the case of an ideal lattice [2]. Here we

consider the addition of a dipole term to excite stopbands

at integer resonances. A dipole term is added in S-POD by

applying a second waveform to two of the four electrodes

superimposed on the focusing waveform. This adds a driving

term to the equation of motion that follows from Eqn. 1

d2x

dτ2
+ κr f (τ) x = −

q

mc2r0

VD (τ) (2)

where VD is the voltage of the dipole perturbation and r0 is

the device radius. This driving term can be equated to the

dipole kick in an accelerator. After some derivation [3], it is

found that setting VD according to the following relation

VD ≈
mc2r0

q

(

2πR

Pλ

)2
∆B

Bρ
(3)

ensures a similar distortion is produced in S-POD as in

EMMA by a dipole perturbation ∆B. P is the number of

rf periods of wavelength λ per "turn" in S-POD and R is

the average radius of EMMA. A piecewise constant volt-

age waveform may be applied, emulating a localised er-

ror source in EMMA (Fig. 1 (a)). This single local error

source results in the activation of stopbands at each integer

tune. Alternatively, the application of a sinusoidal wave-

form (VD = wncos(nθ + φn )) allows a single harmonic to

be excited (Fig. 1 (b)). Measurements confirm that, in this

case, a stopband is produced at the corresponding integer

tune only [4].

RESONANCE CROSSING

Figure 2: Ion survival rate following single (open symbols)

and double (filled symbols) resonance crossings for a range

of crossing speeds u and for perturbation voltages set to

0.05 V (black), 0.1 V (blue) and 0.2 V (red). In the single

resonance crossing case, a single perturbation harmonic w8

was applied while in the double resonance crossing case,

both w8 and w9 were applied with equal magnitudes. In both

cases, the tune was varied from 9.5 to 7.5.

Both single and multiple integer resonance crossing cases

were investigated. In the former case, the resonance at in-

teger 8 was activated by adding a sinusoidal dipole pertur-

bation as described in the previous section. The tune was

then dynamically reduced from 9.5 to 7.5 by varying the

voltage appropriately (the tune was decreased to simulate

acceleration in EMMA). As shown in Fig. 2, the number

of ions surviving resonance crossing was measured for a

range of crossing speeds and perturbation voltages wn . The

crossing speed parameter u is the total change in cell tune

divided by the number of rf periods taken to complete the

crossing; in the case of rapid acceleration in EMMA it is

typically ∼ 5 × 10−4. As expected, fewer ions survive for

slower crossing speeds and for higher perturbation voltages.

Figure 3: Critical perturbation voltage which at each cross-

ing speed results in 50% ions loss indicating the coherent

oscillation is equal to the aperture radius. The theoretical

prediction given by Eqn. 5 is also shown.

Guignard derived the following equation to describe co-

herent amplitude growth caused by resonance crossing [5]

∆
√
ǫ =

π
√

Qτ

2R

Bρ

�
�
�
�
�

1

2π

∫ 2π

0

√

β∆Beinθdθ
�
�
�
�
�

(4)

where ǫ is the action of coherent excitation of dipole motion

and Qτ is the rate of change of tune per turn. Making use

of Eqn. 3, the above expression can be recast in terms of

S-POD parameters

∆An = g
G
n

wn
√

u
(5)

where ∆An is the coherent amplitude growth following the

crossing of a resonance at integer n and the parameter gGn is

given by

g
G
n =

qλ

2πmc2r0

βmax
r f

�
�
�
�
�

∫ 2π

0

√

βr f cos(nθ + φn )einθdθ
�
�
�
�
�

(6)

where the betatron function βr f in a LPT is analogous to that

in an accelerator. In S-POD the coherent amplitude cannot

be directly measured. However, when the ion loss fraction

ξ after resonance crossing reaches 0.5 (i.e. when half the
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plasma is lost outside the aperture), it can be assumed that the

amplitude approximately equals the device aperture radius.

For each crossing speed u, we therefore search for the critical

perturbation voltage for which ξ = 0.5. In Fig. 3, the results

can be seen to be in good agreement with theory.

In the case of EMMA, many integer tunes are crossed

during acceleration. Double resonance crossing was studied

in S-POD by imposing both a harmonic 8 and 9 sinusoidal

perturbation. As before, the tune was dynamically varied

from 9.5 to 7.5, this time crossing two stopbands. In Fig. 2, it

can be seen that crossing two resonances results in a greater

ion loss than when crossing a single resonance (except where

the crossing speed is slow enough to result in a complete loss

of ions in both cases). In addition, fine structure is evident in

the former case which is absent in the latter. We surmise that

this is because the effect of the second resonance depends on

the relative phase between two integer crossings; adjusting

the crossing speed has the effect of varying this relative

phase.

In Fig. 4, keeping the crossing speed fixed, the effect of

the initial relative phase ϕr between the dipole harmonics

was studied at various perturbation voltages. It can been

be seen that at certain ϕr , the effects of the two resonance

crossings tend to cancel. For example, when w8,w9 = 0.2,

the maximum ion loss occurs when ϕr ∼ 250◦, whereas

almost no ions are lost at ϕr ∼ 150◦.

Figure 4: Dependence of the ion loss fraction following dou-

ble resonance crossing on the initial relative phase between

the harmonic 8 and 9 dipole perturbations. The results are

shown for various perturbation strengths, where in each case

the two dipole harmonics have equal voltages.

DISCUSSION

S-POD experiments were conducted exploring the cross-

ing of integer resonances across a wide parameter range. The

results of the single resonance crossing experiment show

that ion losses depend on perturbation voltage and crossing

speed as predicted by theory. In the case of double reso-

nance crossing, the results imply that the amplitude of the

coherent oscillation excited by the first integer resonance

crossing can be increased or reduced depending on the phase
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Figure 5: Time evolution of ion losses when the tune is set

to integer for various harmonic perturbation voltages. The

time axis is scaled by the perturbation voltage.

of the oscillation when the beam comes to the second integer

resonance (Fig. 4).

The above picture holds so long as linearity can be as-

sumed. The fine structure seen in the double resonance

crossing case (Fig. 2) disappears at low crossing speeds, in-

dicating that the phase dependence of the second resonance

crossing is lost. A plausible explanation is that decoherence

caused by non-linearities in the LPT result in the plasma

smearing out in phase space. A similar effect is expected to

occur at low crossing speeds in EMMA, though in that case

the decoherence is caused by chromaticity and momentum

spread.

Evidence of non-linearity is also found when the tune is

fixed on an integer. In that case, when a dipole perturbation

of the corresponding harmonic is applied, it is expected in

a linear system that the resulting coherent oscillation will

grow without bound. However, non-linearities can result in

amplitude dependent detuning and, hence, a finite amplitude

growth as the tune moves away from resonance [6]. This

detuning may explain the nonzero number of ions that re-

main after the initial rapid drop (up to about 40 µs) for low

perturbation voltages in Fig. 5. Non-linearities in S-POD

arise from misalignments of the electrodes.
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