
SETUP OF A HISTORY STORAGE ENGINE BASED ON HYPERTABLE

AT ELSA

D. Proft∗, F. Frommberger and W. Hillert, ELSA, Bonn, Germany

Abstract

The electron stretcher accelerator ELSA serves external

hadron physics experiments with a beam of unpolarized and

polarized electrons of up to 3.2 GeV energy. Its in house

developed control system is able to provide real time beam

diagnostics as well as steering tasks in one homogeneous

environment.

The existing archive engine, a simple application log-

ging parameter changes to a file storage, was unable to cope

with the rising amount of parameter updates per second.

Therefore a new storage system based on the non-relational

database system hypertable has been introduced. It is capa-

ble of storing huge amounts of data to distributed storage

systems, thus being able to handle the recording of every

parameter change at any given time. The data can be read

back with low latency to a newly developed graphical data

browser using a C++ interface.

This contribution will give details on the setup and per-

formance of the history storage engine on top of hypertable.

INTRODUCTION

The main features of the ELSA accelerator control system

[1, 2] include a completely event based data handling model

and a separation of the core functionality (database and

event handling by the kernel) from userspace applications.

It combines steering tasks and real time beam diagnostics in

one homogeneous environment. A transparent design allows

access to the X windows-based graphical user interface from

any computer. An overview of the hard- and software layers

of the whole system is given in Figure 1 (Ref. [3]).

A key component of the control system is a kernel man-

aging a central shared memory database. The database is

separated into several parts, i.e. the resource base contain-

ing structural information about parameters like limits, max.

number of vector elements and the quantity’s physical unit.

The structural information is complemented by the online

database filled with actual parameter values, which are up-

dated continuously at runtime.

One third of the 55 applications attached to the control

system are so-called expert engines. They represent the

physical intelligence of the control system, bringing in any

physical calculations needed to operate the accelerator. Each

expert engine can handle a set of rules which are basically

finite state machines. The rule engine is supplied with a

consistent database snapshot of all parameters captured at

the same time, and itself writes all computed values back

to the online database. The other applications are either

kernel applications (these take care of memory management,

process net communication, etc) or userspace applications.

∗ proft@physik.uni-bonn.de

Figure 1: Hard- and software layers of the control system.

There are currently 14 274 parameters defined in the con-

trol system. These are grouped into controlled (≈ 4000),

measured (≈ 9000) and other parameters. Each group con-

sists of four different data types: analog values (represented

by floating point numbers), digital values (mostly switch-

ing values or integers), strings (character sequences) and

arbitrary byte sequences.

The update of controlled parameters occurs rather rarely,

and is mainly invoked by user interaction or automatic mea-

surement processes. On the other hand most measured

parameters are updated on a regular basis, either cycle-

synchronous (typically every 5 s) or with arbitrary rates up

to 10 Hz.

In total there are on average 675 updates/s. The data rate

is roughly 50 kB/s to 100 kB/s1 resulting in a total volume

of ≈ 6.1 GB/d.

Primary goal of the newly developed archive engine is,

of course, to archive all these changes together with a time-

stamp, regardless of the type or source of the values. Second

goal is to keep the investment cost as low as possible. There-

fore the archive database should run on a regular desktop

computer with no special hardware needs. Here, a bottleneck

could be the access time, in which the data can be returned

back from the database. For best user experience access

times in the magnitude of few seconds are required.

1 50 kB/s during maintenance, 100 kB/s during usual operation

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO101

THPRO101
3128

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Instrumentation, Controls, Feedback & Operational Aspects
T04 Accelerator/Storage Ring Control Systems



DATABASE BACKEND

Hypertable is a non relational database with Google’s

Bigtable design which was chosen as the database backend.

It runs on top of several file systems, including distributed

ones (e.g. HDFS) and storage in the local file system. The

instances of the main server, called RangeServer, can be dis-

tributed among different machines with one Master process

for administration.

Hypertable uses a key-value based data storage model.

The key itself is made up by a row key string, a high resolu-

tion nanosecond timestamp, a column family:qualifier-pair

and control flags. The timestamp can be understood in two

ways: First as a simple timestamp either assigned automat-

ically upon creation or given by the user and second as a

revision of the key-value row. The column family2 represents

the column name in relational databases. These fields are

assigned to the archive engine fields as shown in Table 1.3

Table 1: Hypertable⇔

row key parameter name

column fixed column family name “data”

timestamp recorded parameter change date

value parameter value

The key-value pairs are sorted by their key and stored

inside the memory in CellCaches or they are written to com-

pressed CellStores residing on disk. The data on disk is

supplemented by a block index, to increase search perfor-

mance.

This type of data storage directly implies the optimal way

of data readout: Because the data is sorted by the key (i.e.

parameter and timestamp) it is most efficient to read out a

big time frame for a single parameter. This is exactly what

most of the history-tools (and especially the history-browser

application) require, so it matches the requirements for the

database backend. On the other hand, the performance is

quite poor for many-parameter-few-value access patterns.

Currently the hypertable database (one Master and one

RangeServer) is running on the same machine as the control

system. It is equipped with an Intel i7 CPU with six physical

cores, 8 GB RAM4 and two desktop harddrives with each

3000 GB capacity configured as a raid1 (no distributed file

system is used at the moment). Thus, the additional cost

of the system was just the investment into two hard drives.

Furthermore it is easy extensible by using fallow hard disks

on different process hosts, which can be used as additional

RangeServers.

2 Because only one column is used for the historic data, this feature is

effectively unused.
3 The parameter name used as the row key had to be suffixed by a date

based string due to a maximum revision count in hypertable.
4 Before a recent upgrade of the control system to 64 bit the usable RAM

of the database was limited to 2 GB. All further performance analysis

has been performed with this limitation present.

Figure 2: Graphical user interface: parameter history

browser.

INTEGRATION INTO THE EVENT

SYSTEM

The interface to the database backend is set up on the

control host. The shared memory database running here has

a consistent view of all parameters and their current values.

Upon each parameter update, the event system is triggered to

inform other applications of the value change. At this point

a new hook was installed to communicate with the history

database.

For the implementation, emphasis was put on the strict

separation of the control system’s core and the database com-

munication. Therefore a new shared memory database was

introduced to act as an intermediate database. Whenever a

parameter gets updated, a nanosecond timestamp with the

current time is created and stored in the shared memory

database along with the parameter’s name and value. Nu-

merical values (integers and floating point values) are stored

in their binary representation with 32 bit size5 and strings

as zero terminated character arrays.

The isolation from the control system core is achieved by

using only one application with access to both systems. Its

purpose is to flush the contents of the intermediate database

every three seconds and insert the appropriate records into

the hypertable database. Each new record is filtered by a

regular expression during the insert to filter away unneeded

parameters by name to save storage size.

TOOLS

For interaction with the history data a couple of tools have

been developed. The most important one is a graphical user

interface, which can be directly invoked from the accelera-

tors menu system (see Figure 2). Within the GUI, one can

ask for values of multiple parameters and have them plotted

versus time. The application is based on QCustomPlot, a

Qt plotting widget with integrated support for easy panning

and zooming by mouse.

5 Accordingly, vectorial parameters are stored as n × 32 bit values.

Archive Engine Field Assignment

Hypertable Archive Engine

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO101

06 Instrumentation, Controls, Feedback & Operational Aspects
T04 Accelerator/Storage Ring Control Systems

THPRO101
3129

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: Parameter readout performance vs. number of

parameters read.

Other implemented tools are:

• cshexport: Console application to bulk-export parame-

ter values of given time series to (gnuplot compatible)

ASCII files.

• cshplot: A console application for plotting history data

using gnuplot.

• cshget: A console application to lookup single values

of parameters at given dates.

• cshdiff : This application creates two snapshots of the

values of all parameters at two given dates and after-

wards reports any differences between them. The num-

ber of parameters can be filtered by type (e.g. controlled

or measured parameters) and by name (regular expres-

sion). That way, a comparison of two different machine

states is easily achieved. This information may then be

used to restore the accelerator to a previous state.

PERFORMANCE

The most used feature of the archive engine is the his-

tory database browser. For maximum user experience a fast

readout and display of the data is required.

Figure 3 shows the basic readout performance of the

database system after 8 month of operation. Every data point

represents the throughput during readout of all values stored

in the database of one accelerator parameter. Dependent on

the update rate of each specific parameter, the total number

of values per parameter varies among 5 orders of magni-

tude. The data was collected in a random order during usual

system load, especially the collection of new data was not

interrupted.

Most of the parameters with only few data points (less

than 1 × 105) can be hold in cache, thus being accessible

directly from the random access memory. These queries can

be executed at high throughput and are located in the upper

left region of Figure 3. If the data is not cached, the readout

of small amounts of data takes significantly longer due to

Figure 4: Readout time vs. number of parameters read.

an additional overhead by I/O latency of the hard drives

and on-the-fly decompression of the data. The throughput

increases with bigger amounts of data being read, because

the time needed for preparation of the data is constant. On

the other hand, parameter values which are vectors (n-tuples

of scalar values instead of single scalar values) can only be

read out by a lower rate due to I/O bandwidth limitations.

Figure 4 shows the total time required for export versus

the number of values queried from the database. The readout

again was performed in a random order and takes less than

1.5 s for the readout of up to 10 000 values. Above that

point the throughput is dominated by the delay given by

I/O operations for reading the CellStores from disk and the

corresponding decompression.

CONCLUSION

The possible uses of the archive engine overshoot the

simple recording and display of data: Now post-mortem

analysis of component failures are possible. One can find

correlations between different parameters - either controlled

or measured ones - and watch their evolution over time.

For that, the most important improvement introduced is the

graphical history browser application. It quickly became an

integral and vital part of the control system.

REFERENCES

[1] T. Götz, “Entwicklung und Inbetriebnahme eines verteil-

ten Rechnerkontrollsystems zur Steuerung der Elektronen-

Stretcher-Anlage ELSA, unter besonderer Berücksichtigung

der Anforderungen des Nachbeschleunigungsbetriebes bis

3.5 GeV”, PhD theses, University of Bonn, 1995.

[2] M. Picard, “Entwurf, Entwicklung und Inbetriebnahme eines

verteilten Rechnerkontrollsystems für die Elektronen-Stretcher-

Anlage ELSA, unter besonderer Berücksichtigung der Extrak-

tion im Nachbeschleunigungsbetrieb bis 3.5 GeV”, PhD theses,

University of Bonn, 1995.

[3] D. Proft, “The accelerator control system at ELSA”, IPAC2013,

Shanghai, May 2013, THPEA002, p. 3149.

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO101

THPRO101
3130

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Instrumentation, Controls, Feedback & Operational Aspects
T04 Accelerator/Storage Ring Control Systems


