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Abstract 
The nonstationary model is considered allowed to 

describe the relativistic electron beam dynamics with 
nonuniform current density profile in collisionless 
approximation. The kinetic distribution function is used 
dependent on the particle motion integral, so the 
distribution function automatically satisfies to Vlasov 
equation. The equation for envelope oscillations is solved, 
the equilibrium and asymptotic solutions are found.  

INTRODUCTION 
For a lot of accelerator projects the investigation of 

nonlinear beam oscillations is an important task because 
of possible beam mismatching. Usually nonlinear beam 
dynamics is studied by means of the beam dynamics 
simulation, but analitical investigation of the dynamics by 
means of the simple mathematical models is more 
attractive because it allows to obtain the knowledge of  
the beam behaviour with most physical generality. First 
such a model was proposed by I. M. Kapchinsky and V. 
V. Vladimirsky (KV-model) in 1959 [1]. KV-model gives 
a full kinetic beam description due to the suggestion that 
the kinetic distribution function is a function of particle 
motion integral and hence automatically satisfies to 
Vlasov equation. Yarkovoy's model should be mentioned 
too which allows to describe nonstationary 2D-beams 
without axial symmetry. Another examples of the models 
one can find in [2-6]. All the models mentioned above 
describe the linear beam dynamics. The models taking 
into account the nonuniform  charge density were 
proposed in [7-10]. In [9-10] only self-similar beam 
oscillations are studied, in contrast to [7, 8], where the 
particle distributions are not stationary. 

To study nonlinear oscillations in a relativistic electron 
beam that would be interesting for numerous projects 
including ILC the analogous model [7,8] is applied to the 
case of a sheet continuos non-hollow beam with 
nonuniform charge density in the beam cross-section. The 
model doesn't require the particle distribution to be 
stationary and allows to investigate the beam envelope 
behaviour with time.  

MODEL DESCRIPTION AND 
NUMERICAL CALCULATIONS 

Let us consider a quasistationary relativistic intense 
electron beam. For the mathematical simplicity the sheet 
geometry of the beam is applied. Since the beam lifetime 
is significantly more than the time of transition processes 
in the beam one can describe the beam behaviour by 
means of a smooth function R(z), where R(z) – the beam 
tranverse size, z – longitudinal coordinate. In the case of 
the beam with uniform charge density KV- invariant 
looks as: 
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where x' is derivative of x with respect to z, R' – 
derivative of R with respect to z, 0- beam rms emittance 
squared, x – transverse coordinate. 

If we suppose that the charge density distribution n(x,z) 
in the beam cross-section has parabolic character, which 
is a good approximation for the density distribution of the 
real non-hollow continuous beam: 
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We can obtain the equation for the particle transverse 
motion: 
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here )()( 01 zkaz , )/3()( 23 zkaz , 2/4 mce=k 2 .
For equation (3) the integral I as analogue to KV-

invariant (1)  may be constructed with the help of the next 
relation: 
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wherein we will neglect all summands with 5th power and 
higher.  

Then let us introduce a kinetic distribution function as  

)(12)( 0 In=If ,

here 0n the time-independent normalization constant, 
 – Heaviside function. So one can obtain for the beam 

charge density: 
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where  
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and function u is the solution of equation 
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The whole current conservation should be taken into 
account.  

So for dimensionless beam radius and effective 
emittance the next equation system may be obtained: 
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here and  are dimensionless radius and rms emittance 
respectively; 3/2

10 )/( llu= , 20
l= 0 , pc=l /1 ,

LevnJ=l 02/0 J is the whole beam current, L- the 
width of the beam, p is the plasma frequency, 
corresponding to the density value n0, v is the beam 
velocity.

In (8) time-dependence of rms emittance was obtained 
in self-consistent manner, because function f(I) 
automatically satisfies to Vlasov equation, and relation 
(5) for the density, i.e. for zero moment of the distribution 
function, has a parabolic dependence from x. 

From the system (8) one can find the stationary 
equilibrium state for the beam, that coresponds to the 
beam radius  

3/2
0 )/( lcl=R p0 , 

and effective emittance  

2
00 / l= , 

here  is the normalization constant. 
The system (8) corresponds to the beam envelope 

equation of 4th order unlike the envelope equations in 
[9,10]. It is solved numerically by means of Runge-Kutta-
Feldberg method of 4th order. The results are presented at 
Fig. 1-3.  

Figure 1 and Figure 2 indicate the envelope oscillation 
build-up possibility. 

From Fig. 1-2, it is evident that in the case of a strong 
deviation of the beam initial parameters from equilibrium 
ones the essential growth of rms emittance is observed. 
The reason of the phenomenon is the filamentation 
appearence. 

Figure 3 indicates that the range of the beam 
parameters exists which corresponds to asymptotic 
restriction of the nonlinear oscillation amplitude growth. 
At the distance of few plasma wavelenghts the growth of 
rms emittance is stopped. 

One should note again that the system (8) and its 
solutions are obtained in a self-consistent manner. 

 

Figure.1: dimensionless rms radius zn,1 vs dimensionless 
longitudinal coordinate zn,0. 

Figure 2: phase curves in the case of strong nonlinearity 

Figure 3: phase curves of the beam in asymptotic case. 

CONCLUSIONS 
Nonlinear oscillations of a sheet relativistic electron  

beam are studied in collisionless approximation. 
Transverse current nonuniformity leads to essentially 
nonlinear particle transverse oscillations, but the range of 
the beam parametes exists corresponding to the 
asymptotic limitation of the effective emittance growth 
that allows to simplify the beam-channel matching 
problem.  Depending on nonlinearity power the growth of 
effective emittance can be observed at a time 
corresponding to about a quarter of the maximum plasma 
wavelength.  

The exact beam parameters exist corresponding to the 
case of the beam equilibrium when the effective 
emittance and the beam transverse size does not grow. 
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The results obtained are valid under the condition   
pc>l /0 , i.e. when minimum system linear size is more 

than maximum beam plasma wavelength. 
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