CONTROL OF CALCULATIONS IN THE BEAM DYNAMICS USING APPROXIMATE INVARIANTS

S. Andrianov*, Saint-Petersburg State University, Russia D. Zyuzin ${ }^{\dagger}$, Forschungzentrum Jülich, Germany

Abstract

One of the important problems in the theory of dynamical systems is to find corresponding (invariants). In this article we are discussing some problems of computing of invariant functions (invariants) for dynamical systems. These invariants can be used for describing of particle beams systems. The suggested method is constructive and it is based on the matrix formalism for Lie algebraic tools. We discuss two types of invariants: kinematic and dynamic. All calculations can be realized in symbolic forms. In particular kinematic invariants are based on the theory of representations of Lie algebras (in particular, using the Casimir's operators). For the case of nonlinear kinematic invariants we propose a recursive scheme, which can be implemented in symbolic forms using instruments of computer algebra (for example, such packages as Maple or Mathematica). The corresponding expressions for invariants can be used to control the correctness of computational experiments, first of all for long time beam dynamics.

INTRODUCTION

As is known, in the theory of dynamical systems, one important task is to find functions $I(\mathbf{X}, t)$, which keep the constant value on the trajectories of the system - the socalled invariant functions or simply invariants. In this paper we discuss some issues related to the axiomatic and the computing problems for building of invariants of dynamical systems used in particular to describe the systems controlling beams of particles. The proposed methods are new and constructive. Moreover, they have the form of linear algebraic equations, that allows to easily solve them with the help of computer algebra in two steps. On the first step we solve abstract algebraic equations of corresponding dimension and the results are entered into the appropriate database. On the second step we substitute the parameters of the studying dynamical systems, and then the corresponding dynamical invariants are calculated with a necessary accuracy. The another type of invariants - kinematic invariants are constructed using an algorithm based on the theory of representations of Lie algebras (in particular, using the Casimir operators [1]). Computation of both linear and nonlinear kinematic invariants is performed close to the schemes described in [2,3]. But there we held a clearer description of the computational scheme and its rationale. For the case of nonlinear kinematic invariants proposed scheme is recursive (compare with [2,3]) and also can be easy implemented using computer algebra methods. It should also indicate the need

[^0]for further study of the problems of constructing nonlinear invariants primarily in terms of differential geometry.

BASIC CONCEPTS AND DEFINITIONS

We can give the following definition of a dynamical system

Definition 1 Under the dynamical system with control we mean the mapping

$$
\begin{equation*}
\mathcal{M}: \mathfrak{X} \times \mathfrak{U} \times \mathfrak{B} \times \mathfrak{T} \mapsto \mathfrak{X}, \tag{1}
\end{equation*}
$$

where $\mathfrak{U}, \mathfrak{B}, \mathfrak{T}$ are an admissible control set, a set of control parameters and a set of finite measure from R^{1} respectively.

So, let us defined a semigroup of symmetry $\mathfrak{D}=\{\mathcal{D}\}$ for this dynamic system, i.e. our dynamical system with control \mathbf{U} is given by the equation of motion

$$
\begin{equation*}
\mathbf{X}=\mathcal{F}(\mathbf{X}, \mathbf{U}, \mathbf{B}, t) \tag{2}
\end{equation*}
$$

and in new variables (after conversion of symmetry) $\mathcal{D}=$ $\left.\mathcal{A}_{\mathfrak{X}} \otimes \mathcal{A}_{\mathfrak{U}} \otimes \mathcal{A}_{\mathfrak{B}} \otimes \mathcal{A}_{\mathfrak{T}}\right)$ we will obtain

$$
\mathbf{Y}=\mathcal{Y}(\mathcal{Y}, \mathbf{U}, \mathbf{B}, t) .
$$

The map y corresponds, in particular, the procedure of observation (measurement) of state of the dynamic system. In particularly the investigated system can be described by the system of ordinary differential equation

$$
\begin{equation*}
\frac{d \mathbf{X}}{d t}=\mathbf{F}(\mathbf{X}, \mathbf{U}, \mathbf{B}, t) \tag{3}
\end{equation*}
$$

We can give the following definition
Definition 2 Symmetry transformation of a dynamical system with control will be called a set of maps $\mathcal{A}_{\mathfrak{T}}: \mathfrak{T} \rightarrow \tilde{\mathfrak{T}}$, $\mathcal{A}_{\mathfrak{X}}: \mathfrak{X} \rightarrow \tilde{\mathfrak{X}}, \mathcal{A}_{\mathfrak{U}}: \mathfrak{U} \rightarrow \tilde{\mathfrak{U}}, \mathcal{A}_{\mathfrak{B}}: \mathfrak{B} \rightarrow \tilde{\mathfrak{B}}, \mathcal{A}_{\mathfrak{Y}}: \mathfrak{Y} \rightarrow \tilde{\mathfrak{Y}}$, providing the commutativity of the following diagrams:

$$
\begin{array}{cccc}
\mathfrak{X} \times \mathfrak{U} \times \mathfrak{B} \longrightarrow \mathfrak{X}, & \mathfrak{X} \times \mathfrak{U} \times \mathfrak{B} \longrightarrow \mathfrak{Y}, \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\tilde{\mathfrak{X}} \times \tilde{\mathfrak{U}} \times \tilde{\mathfrak{B}} \longrightarrow & \downarrow & \downarrow & \downarrow \\
\mathfrak{X}, & \tilde{\mathfrak{X}} \times \tilde{\mathfrak{U}} \times \tilde{\mathfrak{B}} \longrightarrow \tilde{\mathfrak{Y}} .
\end{array}
$$

Recall that the dynamic system, and whether symmetry (infinitesimal) is generated by the vector fields - operators Let a dynamic system describes by the following operator Lie \mathcal{L}_{F} :

$$
\begin{align*}
& \mathcal{L}_{\mathbf{F}}=\mathbf{F}^{*}(\mathbf{X}, t) \frac{\partial}{\partial \mathbf{X}}=\sum_{k=0}^{\infty} \mathbf{F}_{k}^{*}(\mathbf{X}, t) \frac{\partial}{\partial \mathbf{X}}= \\
& =\sum_{k=0}^{\infty}\left(\mathbf{X}^{[k]}\right)^{*} \mathbb{F}_{k}^{*}(t) \frac{\partial}{\partial \mathbf{X}} \tag{6}\\
& \begin{aligned}
& \mathcal{L}_{\mathbf{G}}=\mathbf{G}^{*}(\mathbf{X}, t) \frac{\partial}{\partial \mathbf{X}}=\sum_{k=0}^{\infty} \mathbf{G}_{k}^{*}(\mathbf{X}, t) \frac{\partial}{\partial \mathbf{X}}= \\
&=\sum_{k=0}^{\infty}\left(\mathbf{X}^{[k]}\right)^{*} \mathbb{G}_{k}^{*}(t) \frac{\partial}{\partial \mathbf{X}},
\end{aligned}
\end{align*}
$$

and for the symmetry (local) group - the Lie operator $\mathcal{L}_{\mathbf{G}}$: where $\mathbf{F}_{k}, \mathbf{G}_{k}$ are homogeneous vectors of degree k-th order polynomials in the phase variables. From the General theory of groups and algebras follows that the lie group generated Lie algebra of operators $\mathcal{L}_{\mathbf{G}}$, were a group of symmetry, it is necessary and sufficient to satisfy the following equality

$$
\left\{\mathcal{L}_{\mathbf{F}}, \mathcal{L}_{\mathbf{G}}\right\}=0
$$

whence it follows

$$
\begin{equation*}
[\mathbf{G}, \mathbf{F}]=\left\{\mathcal{L}_{\mathbf{G}}, \mathcal{L}_{\mathbf{F}}\right\}=\mathcal{L}_{\mathbf{G}} \circ \mathbf{F}-\mathcal{L}_{\mathbf{F}} \circ \mathbf{G}=0 . \tag{8}
\end{equation*}
$$

We introduce also the following definitions
Definition 4 Function $\mathbf{I}^{\mathbf{F}}$ is called an invariant dynamical system, if the equation $\mathcal{L}_{\mathbf{F}} \circ \mathbf{I} \mathbf{F}=0$ is fulfillment.
and
Definition 5 Function $\mathbf{I}^{\mathrm{F}^{(N)}}$ is called an approximate N-th order invariant dynamical system if there is the equality $\mathcal{L}_{\mathbf{F}} \circ \mathbf{I}^{\mathbf{F}^{(N)}}=\sum_{k=N+1}^{\infty} \mathbf{H}_{k}$.

SOME COMPUTATIONAL EXAMPLES

Using the properties of Lie operators and Kronecker operations, it is easy to get

$$
\begin{aligned}
& {\left[\mathbb{F}_{0}, \mathbb{G}_{j} \mathbf{X}^{[j]}\right]=\mathcal{L}_{\mathbf{F}_{0}} \circ \mathbb{G}_{j} \mathbf{X}^{[j]}=\mathbb{G}_{j} \mathbb{F}_{0}^{\oplus j} \mathbf{X}^{[j-1]},} \\
& {\left[\mathbb{F}_{k} \mathbf{X}^{[k]}, \mathbb{G}_{j-k} \mathbf{X}^{[j-k]}\right]=} \\
& \quad=\mathcal{L}_{\mathbf{F}_{k}} \circ \mathbb{G}_{j-k} \mathbf{X}^{[j-k]}-\mathcal{L}_{\mathbf{G}_{j-k}} \circ \mathbb{F}_{k} \mathbf{X}^{[k]}= \\
& \quad=\left(\mathbb{G}_{j-k} \mathbb{F}_{k}^{\oplus(j-k)}-\mathbb{F}_{k} \mathbb{G}_{j-k}^{\oplus j}\right) \mathbf{X}^{[j-1]}, 1 \leq k \leq j,
\end{aligned}
$$

whence it follows that the matrix equality (for $1 \leq k \leq j$)

$$
\begin{equation*}
\mathbb{G}_{j} \mathbb{F}_{0}^{\oplus j}=-\sum_{k=1}^{j}\left(\mathbb{G}_{j-k} \mathbb{F}_{k}^{\oplus(j-k)}-\mathbb{F}_{k} \mathbb{G}_{j-k}^{\oplus k}\right) . \tag{12}
\end{equation*}
$$

Let us consider the (12) more precisely. Let $j=1$, then from (12) we obtain

$$
\begin{equation*}
\mathbb{G}_{1} \mathbb{F}_{0}=\mathbb{F}_{1} \mathbb{G}_{0}-\mathbb{G}_{0}=\mathbb{G}_{0}\left(\mathbb{F}_{1}-\mathbb{E}\right) . \tag{13}
\end{equation*}
$$

For $j=2$ we obtain

$$
\begin{equation*}
\left(\mathbb{F}_{2} \mathbb{G}_{0}^{\oplus 2}-\mathbb{G}_{0} \mathbb{E}\right)=0 . \tag{14}
\end{equation*}
$$

We should note, that in many practical problems we have $\mathbb{F}_{0}=\mathbf{F}_{0}=0$ and $\operatorname{det}\left(\mathbb{F}_{1}-\mathbb{E}\right) \neq 0$. In this case we can simplify the obtained equations: $\mathbb{G}_{0}=\mathbb{F}_{0}=0$ and $\left(\mathbb{F}_{1} \mathbb{G}_{1}-\mathbb{G}_{1} \mathbb{F}_{1}\right)=0$.
Note 1. It is easy to see that the eq.(14) can be allowed by the substitution $\mathbb{G}_{1}=\alpha \mathbb{E}+\beta \mathbb{F}_{1}$, where α and β are arbitrary constants. Indeed, in this case, eq. (14) becomes identical.
For $j=3$ we obtain $\mathbb{F}_{1} \mathbb{G}_{2}-\mathbb{G}_{2} \mathbb{F}_{1}^{\oplus 2}+\mathbb{F}_{2} \mathbb{G}_{1}^{\oplus 2}-\mathbb{G}_{1} \mathbb{F}_{2}=0$. It should note that in this case we obtain the well known matrix equations $\mathbb{A} \mathbb{X}+\mathbb{X} \mathbb{B}=\mathbb{C}$, where $\mathbb{X}=\mathbb{G}_{2}, \mathbb{A}=\mathbb{F}_{1}$, $\mathbb{B}=-\mathbb{F}_{1}^{\oplus 2}=-\mathbb{A}^{\oplus 2}, \mathbb{C}=\mathbb{G}_{1} \mathbb{F}_{2}-\mathbb{F}_{2} \mathbb{G}_{1}^{\oplus 2}$ or

$$
\begin{equation*}
\left(\mathbb{E}^{[2]} \otimes \mathbb{F}_{1}-\left(\mathbb{F}_{1}^{\oplus 2}\right)^{*} \otimes \mathbb{E}\right) \text { vect } \mathbb{X}=\text { vect } \mathbb{C}, \tag{15}
\end{equation*}
$$

where \mathbb{E} is the identity matrix of the necessary dimension and \otimes is the Kronecker multiplication. For unique solution of the eq. (15) for any matrices \mathbb{C}, it is necessary and sufficient to satisfy the following inequality

$$
\begin{equation*}
\lambda_{i}-\mu_{k} \neq 0 \quad \forall i, k, \tag{16}
\end{equation*}
$$

where λ_{i}, and μ_{k} - eigenvalues of \mathbb{F}_{1} and $\mathbb{F}_{1}^{\oplus 2}$ correspondingly. However, for μ_{k} we can write $\left\{\mu_{k}\right\}=\left\{\lambda_{i}+\lambda_{j}\right\}$, i. e is eigenvalues values of $\mathbb{F}_{1}^{\oplus 2}$ consists of all pairwise sums of eigenvalues of the matrix \mathbb{F}_{1}. Thus, the condition (16) can be rewritten in the following form:

$$
\begin{equation*}
\lambda_{i}-\left(\lambda_{j}+\lambda_{k}\right) \neq 0 \forall i, j, k, \tag{17}
\end{equation*}
$$

where $\left\{\lambda_{i}\right\}$-a set of of eigenvalues of the matrix \mathbb{F}_{1}. These equations can be solved for some control elements (for example, for quadrupole lenses). Obviously, that the condition (17) holds, so that equation (15) is solvable

$$
\begin{aligned}
& \operatorname{vect} \mathbb{G}_{2}=\left(\mathbb{E}^{[2]} \otimes \mathbb{F}_{1}-\left(\mathbb{F}_{1}^{\oplus 2}\right)^{*} \otimes \mathbb{E}\right)^{-1} \times \\
& \times \operatorname{vect}\left(\mathbb{G}_{1} \mathbb{F}_{2}-\mathbb{F}_{2} \mathbb{G}_{1}^{\oplus 2}\right) .
\end{aligned}
$$

Note2. If it is required to carry out some additional conditions, then we obtain equations for the coefficients α and β. For example, for symplectic properties, coefficients α, β can be calculated from the equation

$$
\left(\alpha^{2}-1\right) \mathbb{J}_{0}+\alpha \beta\left(\mathbb{F}_{1}^{*} \mathbb{J}_{0}+\mathbb{J}_{0} \mathbb{F}_{1}\right)+\beta^{2} \mathbb{F}_{1}^{*} \mathbb{J}_{0} \mathbb{F}_{1}=0 .
$$

For example, for a quadrupole lens with gradient k one can obtain the following equality for coefficients α and β.

$$
\alpha^{2}+\beta^{2} k=0 .
$$

CONCLUSION

The above described approach allows us to constructive computational procedures for computation of approximate invariants (for investigated beam lines) up to necessary order of nonlinearities.

REFERENCES

[1] Barut A.O., Raczka R. Theory of Group Presentations and Applications. PPNW, Warszawa, Polska 1977.
[2] Dragt A.J., et al. Emittance Invariants. Lect. Notes in Physics. Vol. 343. Frontiers of Particle Beams Observation, Diagnosis and Correction. Berlin, 1989. P. 94-121.
[3] Holm D.D., Lysenko W.P., Scovel J.C. Moment Invariants for the Vlasov Equation // J. Math. Phys. 1990. Vol. 31. N 7. P. 1610-1615.
[4] Ibragimov N.H., Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, 1999, 366 P.
[5] Kaushal R.S., Mishra S.C. Dynamical Algebraic Approach and Invariants for Time-Dependent Hamiltonian Systems in Two Dimensions. J. Math. Phys. 1993. N 12. P. 5843-5850.
[6] Andrianov S.N. Dynamical Modeling of Particle Beam Control Systems. SPbSU. SPb. 2004 (in Russian).

[^0]: * sandrianov@yandex.ru
 † d.zyuzin@fz-juelich.de

