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Abstract
One of the important problems in the theory of dynamical

systems is to find corresponding (invariants). In this article
we are discussing some problems of computing of invariant
functions (invariants) for dynamical systems. These invari-
ants can be used for describing of particle beams systems.
The suggested method is constructive and it is based on the
matrix formalism for Lie algebraic tools. We discuss two
types of invariants: kinematic and dynamic. All calculations
can be realized in symbolic forms. In particular kinematic
invariants are based on the theory of representations of Lie
algebras (in particular, using the Casimir’s operators). For
the case of nonlinear kinematic invariants we propose a recur-
sive scheme, which can be implemented in symbolic forms
using instruments of computer algebra (for example, such
packages as Maple or Mathematica). The corresponding
expressions for invariants can be used to control the correct-
ness of computational experiments, first of all for long time
beam dynamics.

INTRODUCTION
As is known, in the theory of dynamical systems, one

important task is to find functions I (X, t), which keep the
constant value on the trajectories of the system — the so-
called invariant functions or simply invariants. In this paper
we discuss some issues related to the axiomatic and the
computing problems for building of invariants of dynamical
systems used in particular to describe the systems control-
ling beams of particles. The proposed methods are new
and constructive. Moreover, they have the form of linear
algebraic equations, that allows to easily solve them with
the help of computer algebra in two steps. On the first step
we solve abstract algebraic equations of corresponding di-
mension and the results are entered into the appropriate
database. On the second step we substitute the parameters
of the studying dynamical systems, and then the correspond-
ing dynamical invariants are calculated with a necessary
accuracy. The another type of invariants – kinematic invari-
ants are constructed using an algorithm based on the theory
of representations of Lie algebras (in particular, using the
Casimir operators [1]). Computation of both linear and non-
linear kinematic invariants is performed close to the schemes
described in [2,3]. But there we held a clearer description of
the computational scheme and its rationale. For the case of
nonlinear kinematic invariants proposed scheme is recursive
(compare with [2,3]) and also can be easy implemented using
computer algebra methods. It should also indicate the need
∗ sandrianov@yandex.ru
† d.zyuzin@fz-juelich.de

for further study of the problems of constructing nonlinear
invariants primarily in terms of differential geometry.

BASIC CONCEPTS AND DEFINITIONS
We can give the following definition of a dynamical sys-

tem

Definition 1 Under the dynamical system with control we
mean the mapping

M : X × U ×B × T 7→ X, (1)

where U,B, T are an admissible control set, a set of control
parameters and a set of finite measure from R1 respectively.

So, let us defined a semigroup of symmetry D = {D} for
this dynamic system, i. e. our dynamical system with control
U is given by the equation of motion

X = F (X,U,B, t) , (2)

and in new variables (after conversion of symmetry) D =
AX ⊗ AU ⊗ AB ⊗ AT) we will obtain

Y = Y
(
Y,U,B, t

)
.

The map Y corresponds, in particular, the procedure of
observation (measurement) of state of the dynamic system.
In particularly the investigated system can be described by
the system of ordinary differential equation

dX
dt
= F(X,U,B, t), (3)

or we can introduce the following integral operator

F (X,U,B, t) = X0 +

t∫
t0

F(X(τ),U(τ),B, τ)dτ. (4)

We can give the following definition

Definition 2 Symmetry transformation of a dynamical sys-
tem with control will be called a set of maps AT : T→ T̃,
AX : X→ X̃,AU : U→ Ũ,AB : B→ B̃,AY : Y→ Ỹ,
providing the commutativity of the following diagrams:

X × U ×B −→ X, X × U ×B −→ Y,

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X̃ × Ũ × B̃ −→ X̃, X̃ × Ũ × B̃ −→ Ỹ.
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The definition (including structural arrangement) transfor-
mations leaving invariant system of equations (3), is a very
important task, which allows to solve many of the problems
in the theory of dynamical systems. In particular, we recall
that this approach can greatly simplify the task of integrating
the equations of motion [4].

It is worth mentioning that the semigroups and groups of
symmetries can be both continuous and discrete. Theory of
continuous groups (in particular, Lie groups) is well known
and widely used in various fields of natural science [5].
Among of continuous transformations particularly notewor-
thy group of symplectic transformations, which preserve
the Poisson structure of dynamical systems. It is known,
in particular, that the Hamiltonian system itself generates
symplectic transformation. Returning to the problem of in-
variants, we recall that an invariant dynamical system is any
function (sufficiently smooth), if the following condition
takes place

d
dt

(
I (X, t)

) �����X=F (X,U,B, t )
= 0. (5)

In the paper [2] there are introduced the concepts of kine-
matic and dynamic invariants (for example for symplectic
maps). We generalize these definitions for arbitrary dynami-
cal systems, as well as arbitrary transformations (not only
generated by the dynamical system) and to demonstrate how
to use this methods for investigation of particle beam prob-
lems.
Recall that the dynamic system, and whether symmetry

(infinitesimal) is generated by the vector fields – operators.
Let a dynamic system describes by the following operator
Lie LF :

LF = F∗(X, t) ∂

∂X
=

∞∑
k=0

F∗k (X, t) ∂

∂X
=

=

∞∑
k=0

(
X[k]

)∗
F∗k (t)

∂

∂X
(6)

LG = G∗(X, t) ∂

∂X
=

∞∑
k=0

G∗k (X, t) ∂

∂X
=

=

∞∑
k=0

(
X[k]

)∗
G∗k (t)

∂

∂X
, (7)

and for the symmetry (local) group – the Lie operator LG:
where Fk ,Gk are homogeneous vectors of degree k-th order
polynomials in the phase variables. From the General theory
of groups and algebras follows that the lie group generated
Lie algebra of operators LG, were a group of symmetry, it
is necessary and sufficient to satisfy the following equality

{LF,LG} = 0,

whence it follows

[G,F] = {LG,LF} = LG ◦ F − LF ◦G = 0. (8)

The eq. (8) is called the determining equation for the group
symmetry generated by the functionG, and represents a sys-
tem of linear inhomogeneous equations in partial derivatives
of the first order for component vector-functions G(X, t) =
{gj (X, t)} j=1,n . Decompositions of (6) and (7) after substi-
tution into (8) lead us to the equation

∞∑
k=0

∞∑
j=0

(
G∗k

∂

∂X
F j − F∗j

∂

∂X
Gk

)
= 0,

where, given the homogeneity of the polynomials Gk , F j ,
we obtain the following system of constitutive equations:

k∑
j=0

(
F∗j

∂

∂X
Gk− j −G∗k− j

∂

∂X
F j

)
=

=

k∑
j=0

[
F j ,Gk− j

]
= 0, ∀ k ≥ 0. (9)

We note that for k = 0 the equality (9) is performed auto-
matically: ∂G0/∂X = ∂F0/∂X = 0. For k = 1 one obtains

F∗0
∂

∂X
G1 = −G∗0

∂

∂X
F1. (10)

It is easy to see that in the general case we have (for j ≥ 1)

F∗0
∂

∂X
G j =

[
F0,G j

]
= −

j∑
k=1

[
Fk ,G j−k

]
. (11)

The right part of eq. (11) is calculated by recurrent way,
beginning from the vector G0(t) (see (10)). So, solving
the equation (11) with respect to G j , we can construct the
vector-functions G j , j ≥ 1, are included in the definition
infinitesimal operator of the symmetry group of LG.

Naturally, from a practical point of view, we must confine
ourselves up to some order in the expansions (6) and (7),
which will automatically lead to the fact that equation (8) is
satisfied approximately. We can give in accordance with this
the definition of approximate symmetry (and respectively
approximating the infinitesimal operator of the symmetry
group).

Definition 3 Let LF, LG — dynamic system operators and
symmetry groups, respectively, and we have an equality
{LF,LG} = LH, where H =

∞∑
k=0

Hk =
∞∑
k=0

HkX[k]. Then,

if Hk ≡ 0 (or Hk ≡ 0) for all k ≤ N , then we say that LG
generates approximate symmetry up to order N .

One can prove the following lemma [6]

Lemma 1 The set of approximate N-th order symmetries for
the vector field LF = F∗∂/∂X forms a Lie algebra LS(N )

F .

Lemma 2 For Lie algebras of approximate symmetries
there is an embedding

LS(N+1)
F ⊆ LS(N )

F .
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We introduce also the following definitions

Definition 4 Function IF is called an invariant dynamical
system, if the equation LF ◦ IF = 0 is fulfillment.

and

Definition 5 Function IF(N ) is called an approximate N-th
order invariant dynamical system if there is the equality
LF ◦ IF

(N )
=

∞∑
k=N+1

Hk .

SOME COMPUTATIONAL EXAMPLES
Using the properties of Lie operators and Kronecker op-

erations, it is easy to get
[
F0,G jX[ j]

]
= LF0 ◦G jX[ j] = G jF⊕ j0 X[ j−1],

[
FkX[k],G j−kX[ j−k]

]
=

= LFk
◦G j−kX[ j−k] − LG j−k

◦ FkX[k] =

=
(
G j−kF⊕( j−k )

k
− FkG⊕kj−k

)
X[ j−1], 1 ≤ k ≤ j,

whence it follows that the matrix equality (for 1 ≤ k ≤ j)

G jF⊕ j0 = −

j∑
k=1

(
G j−kF⊕( j−k )

k
− FkG⊕kj−k

)
. (12)

Let us consider the (12) more precisely. Let j = 1, then
from (12) we obtain

G1F0 = F1G0 −G0 = G0 (F1 − E) . (13)

For j = 2 we obtain(
F2G⊕20 −G0E

)
= 0. (14)

We should note, that in many practical problems we have
F0 = F0 = 0 and det(F1 − E) , 0. In this case we
can simplify the obtained equations: G0 = F0 = 0 and
(F1G1 −G1F1) = 0.
N o t e 1. It is easy to see that the eq. (14) can be allowed

by the substitution G1 = αE + βF1, where α and β are
arbitrary constants. Indeed, in this case, eq. (14) becomes
identical.

For j = 3 we obtain F1G2−G2F⊕21 +F2G⊕21 −G1F2 = 0.
It should note that in this case we obtain the well known
matrix equations AX + XB = C,where X = G2, A = F1,
B = −F⊕21 = −A

⊕2, C = G1F2 − F2G⊕21 or(
E[2] ⊗ F1 −

(
F⊕21

)∗
⊗ E

)
vectX = vectC, (15)

where E is the identity matrix of the necessary dimension
and ⊗ is the Kronecker multiplication. For unique solution of
the eq. (15) for any matrices C, it is necessary and sufficient
to satisfy the following inequality

λi − µk , 0 ∀ i, k, (16)

where λi , and µk — eigenvalues of F1 and F⊕21 correspond-
ingly. However, for µk we can write {µk } = {λi + λ j }, i. e
is eigenvalues values of F⊕21 consists of all pairwise sums of
eigenvalues of the matrix F1. Thus, the condition (16) can
be rewritten in the following form:

λi −
(
λ j + λk

)
, 0 ∀ i, j, k, (17)

where {λi }—a set of of eigenvalues of the matrix F1. These
equations can be solved for some control elements (for ex-
ample, for quadrupole lenses). Obviously, that the condition
(17) holds, so that equation (15) is solvable

vectG2 =
(
E[2] ⊗ F1 −

(
F⊕21

)∗
⊗ E

)−1
×

× vect
(
G1F2 − F2G⊕21

)
.

No t e 2. If it is required to carry out some additional con-
ditions, then we obtain equations for the coefficients α and
β. For example, for symplectic properties, coefficients α, β
can be calculated from the equation(

α2 − 1
)
J0 + αβ

(
F∗1J0 + J0F1

)
+ β2F∗1J0F1 = 0.

For example, for a quadrupole lens with gradient k one can
obtain the following equality for coefficients α and β.

α2 + β2k = 0.

CONCLUSION
The above described approach allows us to constructive

computational procedures for computation of approximate
invariants (for investigated beam lines) up to necessary order
of nonlinearities.
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