SHORT PULSES THZ FEL FOR THE OXFORD ACCELERATOR SCIENCE LABORATORY

T. Chanwattana¹, R. Bartolini^{1,2}, A. Seryi¹, E. Tsesmelis³ ¹John Adams Institute, University of Oxford, OX1 3RH, UK ²Diamond Light Source Ltd, Oxfordshire, OX11 0QX, UK and ³CERN, Geneva, Switzerland

Abstract

author(s), title of the work, publisher, and DOI The Accelerator Science Laboratory (ASL) is under development at the John Adams Institute in Oxford with the aim of fostering advanced accelerator concepts and applications. The option to install a short pulse THz FEL based on a conventional RF accelerator driven by a RF attribution photocathode gun is being investigated. This report presents the concept of the facility, the accelerator physics and FEL studies and engineering integration in the maintain University physics department.

INTRODUCTION

must Tuneable, wideband long-wavelength and THz sources, are receiving growing interest because they enable the exploration of many rotation and vibration modes of molecules with different experimental techniques like of imaging and spectroscopy in a wide range of applications: ibution medical science, biology, security [1], beyond the usual electron beam diagnostics [2]. Several facilities are distri explicitly targeting accelerator based THz sources and free electron laser (FEL), which has a potential to generate high power short pulses THz radiation [3]. This work describes the compact THz FEL light source that is ÷ under consideration for the Accelerator Science Lab 501 (ASL). This is one of the options proposed by the John 0 Adams Institute (JAI), for the construction of a BY 3.0 licence university-scale accelerator laboratory at the University of Oxford.

S2E SIMULATION

20 The Linac driven THz FEL comprises a S-band cavity þ 3 m long, an X-band cavity 0.6 m long, a four dipoles $\frac{1}{2}$ magnetic chicane and a 6-m planar undulator. The machine layout is shown in Fig. 1. The final beam energy can reach 20 MeV. In order to study a Linac for the TH₇ g FEL, full start-to-end (S2E) simulation has been done $\frac{1}{2}$ from a RF photocathode gun to an undulator. The nu simulation is divided into three sections. The first section studies the beam injector which consists of a 1.6-cell S-²⁵ studies the beam injector which consists ²⁵ band RF gun and S-band cavity. This section has been ²⁶ studied with ASTRA [4]. The second section consists of an X-band harmonic cavity followed by a four dipole chicane bunch compressor. The beam dynamics in this part has been simulated with ELEGANT [5]. We assume A that space charge effects are negligible after the S-band cavity and defer the investigation of this aspect to from forthcoming studies. The last section is the FEL study in a planar undulator by using GENESIS [6].

Injector

We considered a laser profile at the photocathode with a flat-top of 6 ps (FWHM) length and 0.8 ps rising and falling time with 0.5 nC bunch charge. The electrons from the cathode are injected by the RF gun. Two solenoids are used: next to the RF gun and in front of the S-band cavity. The gradient of the RF gun, the magnetic field of the first solenoid, and the position of S-band cavity have been optimized in order to satisfy the conditions for the invariant envelope for compensating the emittance growth due to the space charge force in a drift between the gun and the cavity. The second solenoid is used to control the beam optics in the cavity. At the end of S-band cavity, a 20-MeV beam has the emittance lower than 1 mm-mrad and energy spread of 1%. The parameters in each component are listed in Table 1. Note that the beam is accelerated off-crest in the S-band cavity to embed an energy chirp which is required for the bunch compression at the later stage.

Figure 1: THz FEL linac for the ASL.

Bunch Compression

In this section, the beam passes through a beamline consisting of an X-band cavity and magnetic chicane to compress the bunch length. The X-band cavity is used in order to linearize the longitudinal phase space giving a better control of the bunch compression. The beam is then dispersed in the chicane. Particles of different energy traverse different path lengths. The longitudinal phase space is then rotated; therefore, the bunch is longitudinally compressed across the chicane. The gradient of the X-band cavity and the bending angle of the chicane have been optimized to ease the compression. The optimized parameters are listed in Table 1. Although the bunch length is not at the minimum, this configuration copes with the transverse emittance growth due to the longitudinal space charge force and the coherent synchrotron radiation (CSR). By minimizing the horizontal beta function at the last bending magnet in the chicane, the CSR effect is alleviated. At the end of this section, the bunch length can be reduced to about 0.7 ps with the peak current of 0.5 kA. The phase spaces before and after the chicane are shown in Fig. 2.

FEL Study

The distribution of the compressed beam is passed into the undulator to study the generation of FEL radiation. The study is based on the FEL under Self-Amplified Spontaneous Emission (SASE) mode and no external seed sources have been considered. In order to get the THz radiation from the beam with energy of about 18 MeV, we consider a hybrid undulator with a period of 3.5 cm and a gap of 1.2 cm having an undulator parameter K = 2.06. The FEL parameter is $\rho \approx 1.8 \times 10^{-2}$. Figure 3 shows the simulated FEL power about the resonance wavelength of 46.4 µm (6.47 THz). The FEL power saturates within 4 m with the saturation power of about 1 MW. A singleshot spectrum of the radiation is shown in Fig. 4.

Table 1: Parameters in injection section (ASTRA) and bunch compression section (ELEGANT)

InjectorBunch charge0.5nCGun and S-band cavity2.856GHzfrequencyGun cell number1.6cellrms spot size on cathode0.4162mmLaser pulse length (FWHM)6.0psLaser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandBeam energy20MeVNorm. emittance1.01mm-mrad	Parameter	Value	Unit	
Bunch charge0.5nCGun and S-band cavity2.856GHzfrequency1.6cellrms spot size on cathode0.4162mmLaser pulse length (FWHM)6.0psLaser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-band1.01mm-mradmorm. emittance1.01mm-mrad	Injector			
Gun and S-band cavity frequency2.856GHzGun cell number1.6cellrms spot size on cathode0.4162mmLaser pulse length (FWHM)6.0psLaser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-band20MeVNorm. emittance1.01mm-mrad	Bunch charge	0.5	nC	
frequencyGun cell number1.6rms spot size on cathode0.4162Laser pulse length (FWHM)6.0Laser rising and falling time0.8Norm. emittance on cathode1.36Gun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797S-band accelerating gradient3S-band RF phase-27.22degreeAfter S-bandBeam energy20Norm. emittance1.01mm-mrad	Gun and S-band cavity	2.856	GHz	
Gun cell number1.6cellrms spot size on cathode0.4162mmLaser pulse length (FWHM)6.0psLaser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandBeam energy20MeVNorm. emittance1.01mm-mrad	frequency			
rms spot size on cathode0.4162mmLaser pulse length (FWHM)6.0psLaser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-band20MeVNorm. emittance1.01mm-mradrms emergy spread1.0420%	Gun cell number	1.6	cell	
Laser pulse length (FWHM)6.0psLaser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandBeam energy20MeVNorm. emittance1.01mm-mradrms energy spread1.04207	rms spot size on cathode	0.4162	mm	
Laser rising and falling time0.8psNorm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-band20MeVNorm. emittance1.01mm-mrad	Laser pulse length (FWHM)	6.0	ps	
Norm. emittance on cathode1.36mm-mradGun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandEam energy20MeVNorm. emittance1.01mm-mradrms. energy spread1.042000000000000000000000000000000000	Laser rising and falling time	0.8	ps	
Gun max. gradient120.2MV/mGun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandEam energy20MeVNorm. emittance1.01mm-mradrms energy spread1.04207	Norm. emittance on cathode	1.36	mm-mrad	
Gun RF phase-3.939DegreeGun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandEam energy20MeVNorm. emittance1.01mm-mradrms energy spread1.04201	Gun max. gradient	120.2	MV/m	
Gun solenoid max. long. field0.2797TS-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-band-27.22MeVNorm. emittance1.01mm-mradrms emergy spread1.04201	Gun RF phase	-3.939	Degree	
S-band accelerating gradient3MV/mS-band RF phase-27.22degreeAfter S-bandBeam energy20MeVNorm. emittance1.01mm-mradrms energy spread1.0420/2	Gun solenoid max. long. field	0.2797	Т	
S-band RF phase-27.22degreeAfter S-band20MeVNorm. emittance1.01mm-mradrms energy spread1.042012	S-band accelerating gradient	3	MV/m	
After S-band20MeVBeam energy20MeVNorm. emittance1.01mm-mradrms energy spread1.04201	S-band RF phase	-27.22	degree	
Beam energy20MeVNorm. emittance1.01mm-mradrms energy spread1.04201	After S-band			
Norm. emittance 1.01 mm-mrad	Beam energy	20	MeV	
rms energy spread 1.042 07	Norm. emittance	1.01	mm-mrad	
This energy spread 1.042 %	rms energy spread	1.042	%	
Bunch compression				
X-band accelerating gradient 4 MV/m	X-band accelerating gradient	4	MV/m	
X-band RF phase -180 degree	X-band RF phase	-180	degree	
Chicane bending angle 12 degree	Chicane bending angle	12	degree	
Beam energy after X-band 17.52 MeV	Beam energy after X-band	17.52	MeV	
Before chicane	Before chicane			
rms bunch duration 1.799 ps	rms bunch duration	1.799	ps	
Norm. emittance 0.99/1.01 mm-mrad	Norm. emittance	0.99/1.01	mm-mrad	
rms energy spread 0.605 %	rms energy spread	0.605	%	
Peak current 80 A	Peak current	80	А	
After chicane	After chicane			
rms bunch duration 0.722 ps	rms bunch duration	0.722	ps	
Norm. emittance 6.50/1.01 mm-mrad	Norm. emittance	6.50/1.01	mm-mrad	
rms energy spread 0.638 %	rms energy spread	0.638	%	
Peak current 500 A	Peak current	500	А	

02 Synchrotron Light Sources and FELs A06 Free Electron Lasers

Figure 2: Horizontal (top), vertical (middle) and longitudinal (bottom) phase spaces before (left) and after (right) the magnetic chicane.

 Figure 3: Average FEL power versus the distance (z) in the undulator.

Figure 4: Spectrum of the FEL radiation at the distance 6 m in the undulator.

RADIATION SHIELDING SIMULATION

The radiation shielding of the ASL is also included in our study. The study is done with FLUKA [7]. In view of future upgrades, to an LPWA-based light source the beam is assumed to have an energy of 1 GeV. The shielding components in the study are concrete walls in the basement of the Denys Wilkinson Building (DWB) of the Department of Physics and a beam dump with the local

8

shielding around it. The FLUKA simulations are based on the 1-GeV electron beam with a bunch charge of 1 nC and sign repetition rate of 10 Hz.

^s Figure 5: Front view (a) and side view (b) of the beam dump and the shielding. Side view (c) and top view (d) of the FLUKA simulation region. All the dimension is in cm.

distribution The beam dump is modelled in a cylindrical shape corresponding to the beam symmetry. The optimized model of the dump consists of three components: graphite core, copper shell, and lead backstop. The dimension of . the dump is shown in Fig. 5(a) and 5(b). It is designed to 201 absorb 99% of the beam energy. The shielding around the 0 dump has two components: inner aluminium box and outer polyethylene box. The dump shielding is used to ensure the radiation safety within the accelerator room. 3.0 The space between the dump and the shielding is reserved for mechanical structures and for an ease of maintenance. Z Figure 5(c) and 5(d) show side and top views of 2 simulation region for the ASL accelerator room, which is proposed to be located in the basement of the Department of 1 of Physics, Oxford University.

Radiation during beam operation (prompt radiation) and radiation after the beam operation (residual radiation) have been calculated with FLUKA with different irradiation profiles and time durations after the beam is terminated. Criteria for radiation protection are based on CERN standard [8] and annual working hours is g estimated as 2000 hours. The prompt dose equivalent rate ⇒in the public area outside of the concrete walls stays well Ξ below the dose limit for non-occupationally exposed person of 0.5 µSv/h as shown in Fig. 6. In case of the residual radiation, the dose rate in the experimental area outside of the dump shielding is below the dose limit for rom occupationally exposed person of 10 µSv/h after the beam is switched off. Content

Figure 6: Dose equivalent during the beam time from FLUKA simulation in (a) side view and (b) top view.

CONCLUSION

We studied the performance of a Linac based THz FEL as a candidate for the ASL. The study has been done by S2E simulation starting from RF photocathode gun to the undulator divided into three sections. The first section uses the ASTRA code to study the injection of a 0.5-nC electron bunch from the RF gun through the S-band cavity. The beam at the end of this section has energy of 20 MeV, emittance of 1 mm-mrad and energy spread of 1% with energy chirp embedded by accelerating the beam off-crest in the S-band cavity. The bunch compression was studied in the second section with the ELEGANT code. The bunch duration is compressed from 1.8 ps to 0.7 ps across a magnetic chicane with bending angle of 12°. The third section is for the FEL study using GENESIS code. The radiation in SASE mode at about 6.5 THz with the power of 1 MW was obtained within 4 m in the undulator.

The structures for radiation shielding of the ASL were also investigated, using the FLUKA code. The beam dump and the local shielding around the dump were designed to absorb the energy from a 1-GeV electron beam. Our simulation shows that the dump and the concrete walls can provide acceptable radiation safety in terms of both prompt radiation and residual radiation.

REFERENCES

- X.Z. Chang, Nature Photonics, 7, 670, (2013). [1]
- O. Grimm and P. Schmuser, DESY-TESLA FEL 2006-03. [2]
- [3] M.J Nasse et al., Rev Sci. Inst, 84, 022705, (2013).
- K. Flottmann, in http://www.desy.de/~mpyflo [4]
- M. Borland, elegant, APS LS-287, (2000). [5]
- S. Reiche, Nucl. Instrum. Methods Phys. Res. Sect. A 429, [6] 243, (1999).
- [7] G. Battistoni et al., "The FLUKA code: Description and benchmarking", AIP Conf. Proc. 896, 31, (2007).
- CERN, "Safety Code F 2006, EDMS: 335729", (2006). [8]

A06 Free Electron Lasers

THPRO031

and