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Abstract

The structure under consideration represents a set of long

thin parallel wires which are placed in a plane with fixed

spacing. The wires can exhibit a limited conductivity. If the

period of the structure is much less than the typical wave-

length, the structure‘s influence can be described with help

of the averaged boundary conditions [1]. The main attention

is given to the case when the bunch flies through the grid

in the orthogonal direction. Radiation of charged particle

bunch which have small transversal size and limited longi-

tudinal one is studied. Analytical expressions for volume

and surface waves are given for the bunches with arbitrary

longitudinal profile. A separate analysis is performed for the

particular case of the plane which is ideally conducting in

only one direction. It is shown that the surface wave is simi-

lar, in some way, to the radiation field of the bunch moving in

a wire metamaterial [2]. It is demonstrated that the detection

of surface waves can be used to estimate the longitudinal

sizes of bunches. Typical numerical results for bunches of

different shapes and structures with different parameters are

given.

INTRODUCTION

Radiation of charged particles in the presence of periodic

structures is perspective for development of new technics for

bunch diagnostics. Recent investigations [2–5] show, that

particular interest represent so-called “wire metamaterial”, a

periodic structure comprised of thin parallel conducting rods.

It was found, that the radiation generated by charged particle

bunch moving perpendicularly to the wires has unique prop-

erties, which allow the determination of the length, shape

and velocity of the bunch.

However, implementation and operation of three-

dimensional wire metamaterial in practice meets a series

of engineering difficulties. Therefore, the investigation of

radiation generated by a bunch passing through a planar

(two-dimensional) wire stricture (Fig. 1) was undertaken.

We note that similar problems were considered earlier [6–9],

but only radiation of a point charge was analyzed and the

main attention was paid to a volume radiation. In our re-

search we consider a charged particle bunch of an arbitrary

longitudinal profile and take into account “non-ideality” of

the wires. Moreover, a special attention is paid to a surface
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Figure 1: Planar wire grid.

wave, which, as will be shown, can play the key role for the

bunch diagnostics.

We consider a charged particle bunch flying through

wire grid perpendicularly to its surface. Wires are di-

rected along x axis and placed periodically in the plane

z = 0, period of the structure is a and wires’ radius is r0.

Charged particle bunch has infinitesimal size in the trans-

verse direction and possess longitudinal charge distribution

η (z − cβt). Thus, electrical current of the bunch has the

form �j = cβδ (x) δ (y) η (z − cβt)�ez . The total electro-

magnetic field can be represented as a sum of “incident”

field of the bunch and the one which is induced due to the

presence of the grid. In order to describe the field induced by

the wire grid we use the averaged boundary conditions [1]

Exω |z=0 = −
c

4π

(
A + B

∂2

∂x2

) {
Hyω

}
,

{Exω } =
{
Eyω

}
= {Hxω } = 0,

(1)

where {} denotes the jump of the corresponding value at

z = 0, i.e., { f (z)} = f (+0) − f (−0). Parameters A and B

are defined by the properties of the wire grid

A = a

[
Z − 2i

ω

c2
ln

(
a

2πr0

)]
,

B = −2i
a

ω
ln

(
a

2πr0

)
.

(2)

The impedance of the wires Z has a simple approximation

for two cases [1]

Z ≈ 1

σe

⎧⎪⎪⎨⎪⎪⎩
(
πr2

0

)−1
, r0 � 2d,(√

2πr0d
)−1

exp {−iπ/4 } , r0 � 2d.
(3)
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where σe and d are the conductivity and the thickness of

the skin layer for the wire material.

The description above is valid under assumption that the

wavelength and the scale of the spatial variation of the inci-

dent field are greater than the grid’s period, which is much

greater than the wires’ thickness:

a � cβ/

(
ω

√
1 − β2

)
, a � 2πc/ω, r0 � a. (4)

Using conditions (2) we obtain the exact solution in the

form of three-dimensional Fourier integral, and the approxi-

mations for the volume radiation and the surface wave are

derived.

VOLUME RADIATION

Firstly, we examine the volume field of transition radiation.

Using the saddle-point method and spherical coordinate sys-

tem (x = R sin θ cos ϕ, y = R sin θ sin ϕ, and z = R cos θ),

the following expressions for the non-zero components of

the field in the far-field zone are obtained

{
E tr
θω

E tr
ϕω

}
=

{
H tr
ϕω

−H tr
θω

}
=

2β

c

{
cos θ cos ϕ

− sin ϕ

}
×

×
exp

{
iω
c

R
}

R

1(
1 − β2cos2θ

) ×

×
sin θ |cos θ | cos ϕ η̃

(
ω
cβ

)
[(

1 − sin2θ cos2ϕ
)

(1 − iκ |cos θ |) + δ |cos θ |
] , (5)

where

η̃ (k) =
1

2π

∫ ∞

−∞
η (ζ ) exp {−ikζ } dζ,

κ = κ̃ω/c, κ̃ = a
π

ln a
2πr0

, δ = acZ
2π

,
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Figure 2: Total angular spectral density of volume radiation

wtr
ω depending on θ and ϕ for ideal wires. The energy density

is measured in 4|η̃ |2/c units; a = 10 mm; r0 = 0.02 mm

(κ ≈ 0.87); ω = πc/(5a). The charge velocity β = 0.9 for

the left image, β = 0.99 for the right image.

Further we analyze the properties of radiation with help

of the angular spectral density wtr
ω = cR2 Re

[
�E tr
ω × �H tr∗

ω

]
(sign ∗ denotes the complex conjugation). Analytical investi-

gation of the expression for wtr
ω show, that the maximum of

radiation lies in the plane xz, but the radiation is absent in

the planes yz (Fig. 2). For the low velocities this maximum

is directed under the small angle to the wires or along them,

if wires are assumed to be perfectly conducting (δ = 0).

Transition volume radiation of highly relativistic bunches

have the maximum directed close to the direction of bunch

motion. Moreover, in some range of κ and β there exist

two local maximums of radiation if δ = 0. This fact allows

obtaining radiation with almost uniform angular distribution

(Fig. 2). Note that the volume transition radiation is sym-

metrical in the respect to xy, xz and yz planes. Numerical

result for different grid properties are shown in Fig. 3.

SURFACE WAVE

The exact expression for the field induced by the bound-

ary has a pole that determines the surface wave. When

the wires are perfect conductors (δ = 0), this poles are

kx = ±ω/c. Here we present the expression for the sur-

face wave, when the bunch has a rectangular profile, i.e.

η (ζ ) =
q

2σ
Θ (σ − |ζ |), where q is the bunch’s total charge,

2σ is the bunch’s length and Θ is the step-function

{
Es
z

Es
y

}
rect

= −qβ

2σ

∞∫
0

⎧⎪⎨⎪⎩
cos

(
ky y

)
sgn z

sin
(
ky y

) ⎫⎪⎬⎪⎭ ×
× e−ky |z |(

1 + κ̃ky
) [

e−ky |βξ+σ | − e−ky |βξ−σ |
]

dky , (6)

the component Es
x = 0. In case when κ̃ = 0, i.e. the grid

represents the plane ideally conducting in the only direction,

then (6) can be simplified

{
Es
z

Es
y

}
rect

= −qβ

2σ
×

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sgn z

[
|z |+ |βξ+σ |

y2
+( |z |+ |βξ+σ |)2 − |z |+ |βξ−σ |

y2
+( |z |+ |βξ−σ |)2

]
y

y2
+( |z |+ |βξ+σ |)2 − y

y2
+( |z |+ |βξ−σ |)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (7)

This surface wave propagates strictly along the wires with

speed of light in vacuum. If δ = 0, then its shape doesn’t

change with time, it shifts as a whole along the wires. Numer-

ical results are shown in Fig. 4, where along with both com-

ponents, the energy flow density �Ss
=

c
4π

(
�Es

)2
sgn (x)�ex

is presented. One can see that maximums of |Es
z | and Ss

as well as zeros of Es
y correspond to the ends of the bunch.

Thus, this wave can be used for measurement of length of

charged bunches.

Finally we note, that consideration of finite conductivity

of wires in the first approximation affects attenuation of

Fourier harmonics of the surface wave by the following way

Es
zω

���y=z=0
∼ −4iqω

πc2 β
exp

{
i
ω

c
|x |

}
κ̃2

(Re δ)2x2
(8)

for |x | Re δ/(2κ̃) � 1.
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Figure 3: Total angular spectral density of volume radiation wtr
ω depending on θ. The energy density is measured in 4|η̃ |2/c

units; a = 10 mm; r0 = 0.5 mm (κ ≈ 0.23, solid line), r0 = 0.1 mm (κ ≈ 0.55, dotted line), and r0 = 0.02 mm (κ ≈ 0.87,

dashed line); (a) ideal conductors, (b) copper (σe = 5.8 · 107 S/m); ω = πc/(5a). The charge velocity is shown in the

external axis, ϕ = 0.

Figure 4: The field components and the energy flow density of the surface wave from the rectangular bunch with q = 1 esu.

Gaussian units are used. The bunch length is σ = 0.5 cm for all pictures; κ̃ = 0.148 cm (a = 1 cm, r0 = 0.1 cm) for the

first row, and κ̃ = 0 for the second row; δ = 0.
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