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Abstract 
The well-known 3-gradient method allows accessing to 

a beam RMS emittance and Twiss parameters at a 
position A by measuring its rms size at a downstream 
position B with at least 3 different transport conditions 
from A to B. We suggest extending this method to access 
to a beam phase-space distribution model at A from beam 
profiles measured at B. We propose to use an iterative 
method which consists in: 

- defining a parametric model describing the beam 
distribution in 4D transverse phase-space at a position A, 

- adjusting iteratively the model parameters by 
minimizing the difference between beam profiles 
measured at B and those obtained by transporting the 
beam generated according to the model with TraceWIN 
code from A to B. 

This method allows taking into account space-charge 
and other transport non-linearities. 

INTRODUCTION 

A beam is fully characterised by its distribution in 
phase-space. Measuring this distribution is then a key-

point in order, either to give correct initial conditions to 
beam simulation codes, or/and to validate these codes. 

The direct measurement of this distribution, 
consisting in measuring the angular distribution of beam 
samples at a given position, fully interceptive and room 
and time consuming is very complicated with high current 
or high energy beam. 

A solution consists in measuring the beam profile at a 
point B for various transports from an upstream point A 
where the beam phase-space distribution can be 
reconstructed. 

In case of linear forces, this reconstruction uses 
tomography technics, needing a large number of 
regularly varying beam transport conditions, and 
assuming that: 

- the beam profile is a projection of the phase space 
distribution along angular direction and 

- the beam transport is a simple linear transformation of 
beam phase-space distribution [1]. 

Nevertheless, in case of non-linear forces (especially 
with space-charge), the transformation depends on the 
unknown initial distribution. Tomography technics cannot 
be directly applied. 

METHOD PRINCIPLE 

 

The solution we proposed is the following: 

- Step 0: make beam profile measurements Pmi (1 ≤ i 
≤ N) at a point B of an accelerator in N various 
transport conditions from an upstream point A.  

- Step 1: assume that beam phase-space distribution 
description at A, depends on n parameters: i. 

- Step 2: generate and transport this beam with a 
transport code (TraceWIN [2]) to B, in the N transport 
conditions. 

- Step 3: compute a distance D between the simulated 
beam profiles Psi and the measured ones, and vary 
iteratively the beam model parameters and iterate step 
1 and 2 until D is minimum. 

Each step is described below. 

 

At step 0, usually, the beam profiles Pmi are measured 
at position B for N various transport conditions between 
points A and B.  

 

In a continuous transport channel, the phase-space 
distribution of a perfectly matched* beam is a function of 
the motion Hamiltonian: 

     rrHFrrf
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We modelled the phase-space distribution by a 2-

parameter function of H: 
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with, the Hamiltonian modelled by a  4-parameter 

function:  

and: 

222
yxr  , 

222 ''' yxr  , and 
ds

dx
x '  

In a regular (~periodic) transport channel, one 

assumes here that a perfectly matched beam is a linear 

deformation of the perfectly matched beam in its 

equivalent
#
 continuous focusing channel. The couplings 

in (x, x’) and (y, y’) phase-spaces, is then modelled by a 4-

parameter transformation: 

 ___________________________________________  

* a beam is said  perfectly matched to a continuous focusing channel if 
its phase-space distribution is invariant along the channel. 
# two regular or periodic transport channels are said equivalent if they 
have the same phase-advances per unit length. 
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General Algorithm

Step 0: Experiment  

Step 1: Beam Parametric Model 
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The model is based on the following assumptions: 

- the x and y coordinates, as well as the velocities x’ and 

y’ are supposed to be axisymmetric, 

- the kinetic energy T(r’) is obtained assuming a 

paraxial approximation for velocities
!
. 

 

The model uses then 10 different parameters. 

 

The beam transport is simulated with the TraceWIN 

code [2]. 

The first stage consists in generating a multiparticle 

distribution from the parametric function of step 1. 

The second stage consists in transporting this beam 

from A to B in the same N transport conditions as in step 

0. A batch version of TraceWIN with PICNIC3D space-

charge routine [3] is used and encapsulated in a Matlab 

code for an automatic process. The associated beam 

profiles Psi at B are computed and stored. 

 

The measured profiles Pmi and the simulated ones P si 

are compared. The chosen distance D is the sum of the 

quadratic deviation of these normalized profiles. 

The algorithm minimizing D is the Matlab fminsearch 

function, iterating steps 1 to 3 and adjusting the 

parameters until a minimum is found. 

As a profile is obtained from a Np multiparticle 

distributions, it carries a statistical noise. Even with a no 

noise measurement, the minimized D would not converge 

to 0 but to
psta t ND 1 . If the model does not 

describe perfectly the distribution, an error contribution 

Dmodel is added. 

It is necessary to underline that the number of 

experiments N needs to be large enough in order to have 

enough information on the initial distribution. 

SIMULATION RESULTS 

Before applying this technic to a set of experimental 
profiles, it has to be benchmarked by processing a set of 
data obtained on a “numerical experiments”. Three 
types of input distributions have been used: 
- (a) The first is generated from the model with known 

values of the parameters. 

- (b) The second is the result of simulations of an IFMIF-

EVEDA distribution at an early stage of development. 

- (c) The third is the result of simulations of the entrance 

of the HEBT for the IFMIF-EVEDA accelerator for a 

more recent version. 

 

Two kinds of benchmarks are done: 

- the model is directly fitted to the (b) and (c) 

distributions to test the accuracy of the model. 

- a numerical experiment is simulated with (a) 

distribution, and its processing is made following the 

steps described previously to test if the process 

converges to the expected initial values. 

 

The effect of space charge on equilibrium distribution 

is to transform the elliptic shape to a more square shaped 

one [4]. The (b) distribution showed in Fig. 1 is a good 
exercise to test the model as it has a regular shape, but yet 
is affected by space charge as it does not have a pure 
elliptic shape. 

The best fit and the deviation with the original 
distribution are showed in Fig. 1. The final distances are 

px ND 1 and 31058.1 yD , while the 

statistical noise (10
6
 particles) is

3104.1 sta tD . The 

error coming from the model is small, and we can see in 

lower part of Fig. 1 that there is no particular pattern in 

the deviation. 

 

 
Figure 1: Phase-space distributions in the (x,x’) (left) and 
(y,y’) (right) planes, fit for the (b) distribution 

 

 

For this distribution, the shape has a “butterfly” pattern, 
(Fig. 2). The final distances are Dx = 2.77 10

-3
 and  Dy = 

2.73 10
-3

, which shows that the error coming from the 

model cannot be assumed to be small with respect to the 

statistical noise. We observe on Fig. 2 that the global 

shape of the distribution is obtained, but the model is not 

able to reproduce the “butterfly” shape of the distribution.  ___________________________________________  

! the transverse velocities are small with respect to the longitudinal one, 
which is considered to be constant. 
 

Step 2: Beam Transports

Step 3: Profile Comparison, Iterative Process

Model: Benchmark with Distribution (b)

Model: Benchmark with Distribution (c)
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Figure 2: Phase-space distributions in the (x,x’) (left) and 
(y,y’) (right) planes, fit for the (c) distribution 

 

Another approach is to assume that rotation term in the 

expression of the kinetic energy in the Hamiltonian model 

is then not negligible :   2

2'', 
r

P
rrrT  . 

We can than introduce a bias in the distribution of P

as a function of r introducing two more parameters to 

the model. This adds a correlation between x’ and y’. 
The model fist better the distribution, as seen in Fig. 3. 

The distances become Dx = 1.77 10
-3

 and  Dy = 1.95 10
-3

  

and the error due to the model is reduced. Unfortunately, 

increasing the number of parameters reduces the 

algorithm stability. 

 

 
Figure 3: Phase-space distributions in (x,x’) plane and fit 
for the (c) distribution assuming correlation between x’ 
and y’. 

 

Finally, we process a numerical experiment using a 
distribution at point A described by the model. In step 1, 
the initial parameters used for the minimisation are 
changed randomly in order to simulate an error with 
respect to what was expected in the simulations. 4 
transports are used in order to have the projection on the 
main axis of the distribution and two in between. 

In these conditions, even if the distance between the 
measured and simulated profiles is small, the parameters 
did not perfectly converge to their initial values (Fig. 4). 
By adding other transport conditions (and equivalent 
projection angles), the results are closer and closer to the 
expected one. However, the convergence is still 
dependent on the initial conditions. A criterion has to be 
determined in order to generate more adapted 
experimental conditions, including space-charge. 

 

 
Figure 4: results obtained if the experiment does not give 

enough information. Left: comparison of profiles obtained 

from measurements and simulations after minimisation. 

Right: deviation between the (x,x’ )input distribution and 

the reconstructed one. 

CONCLUSION 

A physic-based parametric model was developed in 

order to represent the distribution in phase space. This 

model was then used in a minimisation method to 

reconstruct in a distribution in an upstream point A, from 

profiles measurements in a downstream point B. 

The model was showed to be able to model 

distributions coming from de IFMIF-EVEDA 

simulations, with some limitations (“butterfly” pattern). 

Some more work needs to be done also to extend the 

model and see if it can represent the “butterfly” pattern 
seen in the (c) distribution. 

The model has also to be simplified in order to reduce 

the number of parameters, for which some of them 

appears to be correlated, in order to improve the stability 

of the code.  

Applied in the complete method, this model is able to 

reconstruct the distribution. The main limitation is the 

number of experiment sets needed, to have enough 

information for the reconstruction. 
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