
CURRENT STATUS OF THE GPU-ACCELERATED ELEGANT
∗

K. Amyx†, J.R. King, I.V. Pogorelov‡, Tech-X Corporation, Boulder, CO 80303, USA

M. Borland, R. Soliday, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

Efficient implementation of general-purpose particle track-

ing on GPUs can result in significant performance benefits

to large-scale tracking simulations. This paper is an update

on the current status of our work on accelerating Argonne

National Lab’s particle accelerator simulation code ELE-

GANT using CUDA-enabled GPUs. We summarize the

performance of beamline elements ported to GPU, and dis-

cuss optimization techniques for some important collective

effects kernels, in particular our methods of avoiding costly

thread contention. We also present preliminary results of a

scaling study of the GPU-accelerated version of the code.

INTRODUCTION

ELEGANT is an open-source, multi-platform code used

for design, simulation, and optimization of FEL driver linacs,

ERLs, and storage rings [1, 2]. The parallel version, Pele-

gant [3, 4], uses MPI for parallelization. Several “direct”

methods of simultaneously optimizing the dynamic and mo-

mentum aperture of storage ring lattices have recently been

developed at Argonne [5]. These new methods typically

require various forms of tracking the distribution for over a

thousand turns, and so can benefit significantly from faster

tracking capabilities.

Graphics processing units (GPUs) offer unparalleled gen-

eral purpose computing performance, at low cost and at high

performance per watt, for large problems with high levels

of parallelism. Unlike general purpose processors, which

devote significant on-chip resources to command and con-

trol, pre-fetching, caching, instruction-level parallelism, and

instruction cache parallelism, GPUs devote a much larger

amount of silicon to maximizing memory bandwidth and

raw floating point computation power.

Our main goals for this project are (1) to port a wide

variety of beamline elements to GPUs so that ELEGANT

users can take advantage of the high performance that GPUs

can provide, (2) support CUDA-MPI hybrid parallelism to

leverage existing GPU clusters, and (3) maintain ‘silent sup-

port’ so that GPU-accelerated elements can be used without

additional input from the user.

BEAMLINE ELEMENT PERFORMANCE

In this section we present a list of the particle beamline el-

ements fully ported to the GPU, and rough estimates of their

acceleration compared to the reference CPU code, compar-

∗ Work supported by the DOE Office of Science, Office of Basic Energy

Sciences grant No. DE-SC0004585, and in part by Tech-X Corporation
† Current address: Sierra Nevada Corporation, Centennial, CO
‡ ilya@txcorp.com

ing an NVIDIA Tesla K20c GPU to an Intel Core i7-3770K

CPU in simulations with a few million particles.

QUAD and DRIFT: Quadrupole and drift elements, im-

plemented as a transport matrix, up to 3rd and 2nd order,

respectively: ∼ 100x acceleration, achieving particle data

bandwidth of 80 gb/s and over 200 GFLOPS in double pre-

cision.

CSBEND: A canonical kick sector dipole magnet with

exact Hamiltonian (computationally intensive): Nearly 30x

acceleration due to its high arithmetic intensity.

KQUAD, KSEXT, MULT: A canonical kick quadrupole,

sextupole, and multipole elements using 4th order symplec-

tic integration: 45x acceleration.

EDRIFT: An exact drift element: Roughly 20x accelera-

tion (purely bandwidth bound).

RCOL: Rectangular collimator: 60x acceleration if parti-

cles are removed from simulation.

LSCDRIFT: Longitudinal space charge impedance: ∼ 45x

acceleration using optimized histogram calculation.

CSRCSBEND: A canonical kick sector dipole with co-

herent synchrotron radiation: Over 50x acceleration using

optimized histogram calculation.

RFCW: RF cavity element, a combination of a first-order

matrix RF cavity with exact phase dependence (RFCA),

longitudinal wake (WAKE) and transverse wake (TRWAKE)

specified as a function of time lag behind the particle, and

LSCDRIFT: over 30x acceleration, convolution-based wake

elements being the primary bottleneck.

OPTIMIZATION OF

COLLECTIVE-EFFECTS KERNELS

Histogram Computation

Many collective-effects beamline elements in ELEGANT

require binning of the particle distribution, i.e., computing

a histogram. Calculating a histogram on a GPU is diffi-

cult because multiple threads often need to update the same

location in memory at the same time. This leads to thread

contention issues that may cause either extreme performance

problems (if thread-safe atomic operations are used) or race

conditions (otherwise). A baseline implementation that cre-

ates a sub-histogram in shared memory per CUDA thread

block and which relies on atomic memory transactions to

fill the histogram yields suboptimal performance–roughly

10x of a reference CPU implementation.

Our improved algorithm for histogram computation is

based on the following observations about any kernel that

relies on atomics to shared memory: atomics to shared mem-

ory are costly, and the cost of such atomics roughly scales

with the level of thread contention. The level of thread

contention is mostly a product of the number of bins and

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-MOPME035

MOPME035
454

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and Electromagnetic Fields
D06 Code Developments and Simulation Techniques



Figure 1: A schematic of the histogram computation algo-

rithm. (See text for details.)

the resulting distribution. Thus, creating additional sub-

histograms (as memory size permits) will reduce the thread

contention and increase the performance, while the cost of

combining these sub-histograms in shared memory will be

negligible. Our optimized kernel, illustrated in Fig. 1, uti-

lizes the Fermi GPU’s reconfigurable L1/Shared memory

cache to prefer shared memory. Because the most costly

thread contentions arise from threads within the same warp,

we minimize the chances of intra-warp threads accessing

the same memory location: sub-histogram access is strided

by nWarpsPerBlock. The histogram kernel tries to fit as

many sub-histograms as possible per thread block while

maintaining high block occupancy. (The number of thread

blocks is limited to the block occupancy multiplied by the

GPU’s number of multi-processors.) The final step in our

histogram computation is a __threadfence()-based reduction

that combines the results of multiple thread blocks.

Convolution

Array convolution computation is required by several

wakefield elements. In a “typical” ELEGANT simulation,

the array size is several hundred to a few thousand, which

is not large enough to benefit from a convolution theorem-

based approach. At the same time, relying on a serial CPU

implementation would negatively impact performance even

in large particle count runs, due to the algorithm scaling as

the product of array sizes, O(N1N2).

Our optimized convolution kernel achieves good accel-

eration by buffering sub-sections of each array in shared

memory while performing O([buffer size]) computations.

This operation computes part of the final result for a given

array index. As the convolution is a linear operation, each

thread block then applies an atomic addition operation to

produce the final result of the convolution.

Reductions with Asynchronous Execution

Reduction operations on particle phase space coordinate

arrays are present in many ELEGANT elements and diag-

nostics. We template standard reduction algorithms over the

reduction operation (e.g. sum, minimum, maximum, etc.).

In these algorithms, thread blocks concurrently apply the re-

duction operation to subsections of the data array and place

the result in global memory. The last block to finish the

sub-reduction then reduces the results from the previous

step.

Certain functions (i.e. accumulate_beam_sums and com-

pute_centroids) that compute the beam properties may be

called from multiple elements or the main ELEGANT

do_tracking loop. These functions reduce quantities from

separate data arrays, for example during computations of

the mean and standard deviation of beam’s phase space co-

ordinates. By launching these functions asynchronously on

separate CUDA streams we can take advantage of concur-

rency during the last reduction operation and the transfer

of the reduction result(s), in addition to moving towards

achieving the maximum device memory bandwidth during

the concurrent reductions. Asynchronous reductions are

40% faster than their synchronous counterparts with data

arrays of size one million on a NVIDIA Telsa K20c.

PARTICLE LOSS AND SORTING

Many beamline elements allow for particle loss. When

a particle is lost on the CPU, it is swapped with the parti-

cle at the end of the particle array and the particle count is

decremented. This algorithm is not amenable to the GPU

where concurrent particle-update operations are performed.

A straightforward GPU algorithm is to fill an array with the

particle index plus the number of particles if the particle

is lost, and just the particle index otherwise, and then sort

the particle array by this key. This is somewhat inefficient

still, given that sort algorithms are not amenable to the con-

currency of the GPU. However, when the fraction of lost

particles for any given element is below 10% or so–as is

often the case in practice–a more efficient algorithm than

a straightforward sort-by-key can be designed, as we now

discuss.

Our particle-loss algorithm is illustrated in Fig. 2. A com-

putational kernel does two things to incorporate particle

losses: 1) it returns an unsigned integer (zero if the particle

is lost and unity otherwise); and 2) it fills a particle-sort

index with the particle index plus the number of particles

if the particle is lost, and the particle index otherwise. The

particle-loss algorithm then performs a sum reduction over

the return value. If the result is equal to the number of par-

ticles, no particles are lost and the remainder of the loss

computation is skipped. If particles are lost, the end of par-

ticle array (size of the number of lost particles) is sorted

with Thrust::sort, and then sort index is converted to unity if

the particle is lost, and zero otherwise. An inclusive scan is

performed which creates a particle linear index array. When

two subsequent elements of this array are different, a particle

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-MOPME035

05 Beam Dynamics and Electromagnetic Fields
D06 Code Developments and Simulation Techniques

MOPME035
455

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 2: A schematic of the particle-loss sorting algorithm

in GPU-accelerated ELEGANT for a simplified case with

20 total and 4 lost particles. (See text for details.)

is lost and the value of the second element in the pair, i, in-

dicates that it is the ith particle that is lost. This information

is used to produce a contiguous particle loss map which

contains indexing information on the lost particles. A final

step uses the particle loss map to swap particles to the end

of the particle array, and the particle count is decremented

by number of lost particles. This final step is launched with

a different CUDA thread block decomposition that accounts

for the sparsity of operations. Although the final two steps of

this algorithm contain uncoalesced reads and writes, it is still

more efficient than a straightforward sort-by-key algorithm

due to the sparsity of operations.

Relative to the sort-by-key algorithm, this optimized al-

gorithm is 4× faster with 0.5% losses, 3× faster with 5%

losses, 2.5× faster with 10% losses and roughly equivalent

with 50% losses (benchmarking on an NVIDIA Tesla K20c).

DISTRIBUTED-MEMORY SCALING

In this section we present preliminary results from per-

formance and scaling studies of the GPU-accelerated EL-

EGANT relative to the CPU-only version of the code.

These studies are performed on the 18,688-node, hybrid-

architecture, Titan Cray XK-7 supercomputer at the Oak

Ridge Leadership Computing Facility at the Oak Ridge Na-

tional Laboratory. We use the LCLS linac beam delivery

system as our test lattice, so that these studies represent

end-to-end application performance in a realistic setting, as

opposed to the kernel- and function-specific results from

previous sections. This choice presents a more reasonable

comparison of the GPU to CPU performance, where the per-

formance of two 8-core AMD Opteron CPUs are compared

to the performance of a single NVIDIA Tesla K20x (as there

are 16 CPU cores and a single GPU per Titan node). With

8M particles, a K20x GPU is approximately 6 times faster

than 16 Opteron CPU cores.

Figure 3: Weak scaling results for the GPU-accelerated

version of ELEGANT, arranged by beamline element. LCLS

driver linac lattice was used as the test case for this study.

Results of the weak scaling studies (where the number

of cores is increased in proportion to the problem size) are

shown in Fig. 3. One can see that most beamline elements

exhibit nearly perfect scaling over the explored range of the

problem sizes (up to 2 billion macroparticles). Exceptions

are the I/O (we did not use the ELEGANT’s SDDS parallel

I/O capabilities in this test), and the RFCW, which has only

recently been implemented and still undergoes optimization.

One observation from these weak scaling studies is that, for

the full LCLS test case, and relative to a job with 8 million

particles, it takes the GPU-accelerated code only 4 times

longer to run a 256 times bigger job to completion, a very

good scaling performance in an important-in-practice range

of problem sizes. In particular, the full LCLS beamline

simulation was done within 45 minutes when using 2 ×

109 particles, which is comparable to the number of actual

electrons in the beam.

At the time of writing, we are working on further opti-

mization of the GPU code, and the results presented in this

section are likely to be superseded as this work progresses.

REFERENCES

[1] M. Borland, “elegant: A Flexible SDDS-compliant Code for

Accelerator Simulation”, APS LS-287, September 2000.

[2] M. Borland, V. Sajaev, H. Shang, R. Soliday, Y. Wang, A.

Xiao, W. Guo, “Recent Progress and Plans for the Code EL-

EGANT,” in Proceedings of ICAP’09, WE3IOpk02 (2009).

[3] Y. Wang, M. Borland. “Implementation and Performance

of Parallelized ELEGANT”, in Proceedings of PAC07, TH-

PAN095 (2007).

[4] H. Shang, M. Borland, R. Soliday, Y. Wang, “Parallel SDDS:

A Scientific High-Performance I/O Interface,” in Proceedings

of ICAP’09, THPsc050 (2009).

[5] M. Borland, V. Sajaev, L. Emery, and A. Xiao, “Direct Meth-

ods of Optimization of Storage Ring Dynamic and Momen-

tum Aperture”, in Proceedings of PAC09, TH6PFP062 (2009).

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-MOPME035

MOPME035
456

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and Electromagnetic Fields
D06 Code Developments and Simulation Techniques


