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Abstract 

We present our parallel 3D3V particle-in-cell code for 

the numerical simulations of ultrarelativistic charged 

beams in supercolliders. In the algorithm we employ the 

three-dimensional set of Maxwell equations and the 

Vlasov-Liouville equation for the distribution function of 

beam particles in 6-dimensional phase space. The code 

allows performing numerical experiments with an 

arbitrary density distribution, beam crossing angle and 

relative offset. We present the results of numerical 

simulations of colliding beams using dummy parameters 

and parameters close to the ones of the newest ILC 

project. 

INTRODUCTION 

Today numerical simulation of charged particle beam 

dynamics in supercolliders is based on the slice model. 

The colliding beams are divided into slices of 

macroparticles. The particles of each beam receive a kick 

of the 2D fields of counter beam and change their motion. 

Usually the transversal field of each slice is calculated 

with Basetti-Erskine equations or as the derivative of 2D 

potential. The Poisson equation with boundary conditions 

or the Green function can be used to obtain the potential 

[1]. Standard ways of parallelizing are based on the slice 

decomposition, when one or few slices are assigned to 

one processor. Another way is two-dimensional domain-

decomposition approach, when each processor contains 

one rectangular block domain. But this method is not 

effective when particles move far from their positions 

during time step. This problem can be avoided by using 

particle-field decomposition [2].  

Reduction to the 2D problem can not completely cover 

the three-dimensional and longitudinal effects in 

particular, which can play significant role in cases of 

superhigh densities. Besides, the model complicates 

simulations of the beams crossing at angle. 

In our 3D algorithm we employ the Vlasov-Liouville 

equation for the distribution function of beam particles, 

the three-dimensional set of Maxwell equations and new 

methods for initial and boundary conditions calculations 

[3, 4], which automatically account for such difficulties. 

We solve these equations by using the particle-in-cell 

(PIC) method and the leapfrog scheme. 

From the mathematical point of view the main problem 

of the three-dimensional modeling is the presence of the 

high relativistic factor values (the field gradients are 

high), the convergence conditions for the leapfrog scheme 

and the necessarily big number of particles in 3D cell. 

Thus the parallel algorithm is based on the mixed Euler-

Lagrangian decomposition in order to achieve good load 

balancing and to reduce computation time. With the 

advances of the code it will be possible to apply it for 

one-passage beam-beam simulations in linear colliders 

with supercritical parameters. 

COMPUTATIONAL METHODS 

We consider the motion of counter charged 

electron/positron beams in rectangular domain. The 

motion takes place in vacuum in self consistent 

electromagnetic fields taking into account the external 

focusing field of collider. Each beam is defined by its 

shape, sizes, coordinates in space and time, number of 

particles, non-linear density distribution. The problem can 

be described by Vlasov’s kinetic equation for the 
distribution function of electrons and positrons and the set 

of Maxwell’s equations: 
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Three-dimensional Maxwell's equations allow 

calculating the beams movement regardless of the 

collective motion direction.  

We use dimensionless variables (the characteristic 

length L0 of the beam is 1 cm and the characteristic speed 

v of the particles is the speed of light). We apply particle-

in-cell method with PIC form factor and the leap-frog 

scheme. All the components are calculated at the half-step 

time and space grids. In this case all the derivatives 

involved in the equations are written with central 

differences, and this scheme provides second order 

accuracy by time and space. We apply the Villancenor-

Buneman scheme in order to calculate the currents, this 

method satisfies precisely the Gauss's law in final 

differences and thus significantly reduces the 

approximation error and makes the algorithm more 

robust. 
 ___________________________________________  
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PARALLEL ALGORITHM 

The quality of results, obtained with PIC method, 

increases with increasing of particle number in cell, 

usually 10
2
-10

3
 particles are taken. The high values of 

relativistic factor lead to the high gradients and thus many 

small spatial steps, this fact leads by-turn to the high total 

number of particles. The convergence condition makes 

the problems worse: the smaller time-step is – the smaller 

spatial step has to be. The huge total number of particles 

requires much RAM resources, which one processor 

cannot provide. All these facts necessitate creating of the 

well-balanced 3D parallel code of high scalability. 

The spatial domain is divided uniformly into stripes 

along the y axis. The collective particle motion takes 

place in longitudinal direction, thus the quantity of 

interprocessor communications will be smaller in 

comparison with case of decomposition along the z-axis. 

Each subdomain is assigned to a group of 1..N0 

processors, each processor in the group has the same 

spatial grid data, and the particles corresponding to the 

physical subdomain are divided evenly between all the 

processors of the group. Such a way of parallelizing 

yields even particle distribution within the group due to 

using many processors in the high-density regions of the 

domain (see Fig.1). 

 

 

Figure 1: Decomposition structure. 

 

In order to calculate initial and boundary electric fields 

each processor computes its own density 3D array and 

sends to the corresponding main processor of the group. 

Each main group processor calculates its own field 3D 

arrays and sends it to all the main processors, after the 

procedure it broadcasts the obtained field data within its 

own group. 

The main group processors use Maxwell equations to 

compute new fields and broadcast them within their own 

groups. When the particle leaves the corresponding 

subdomain, the algorithm sends its parameters to one of 

the neighbor processors. 

It is necessary to calculate the initial particle 

distribution twice. First the master processor computes 

the particle number in each of N0 groups, determines the 

most optimal processor distribution of given N processors 

among these groups and the maximum particle number in 

every processor. Then the master creates the initial 

particle parameters and sends the packs of parameters to 

each of N processors until all the particles are distributed. 

SIMULATION RESULTS 

The algorithm described has been tested using 

analytical solution for the particle motion through a 

cylindrical beam with Gaussian density distribution in the 

transversal directions: 
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In this case the deflection angle of the particles after the 

interactions conforms to the following expression [5]: 
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We used σ=6.25·10-2
 cm, cylinder radius R=3σ, 

cylinder length l=0.05 cm. Qbeam=-Ne, N=10
10

, 

Qpart=e=4.8·10-10
 esu, relativistic factor of all the particles 

γ=6.85·103
. Spatial grid: 40x40x40, spatial step 

hx=hy=0.025, hz=0.0025, time step 5·10-4
, number of 

model particles in the beam J=4·106
. Fig.2. demonstrates 

the absolute values of the analytical solution (line), the 

numerical solution (crosses) for the deflection angle after 

90 time steps.  

 

 

Figure 2:  Absolute value of the angle deflection, 

analytical and numerical solutions. 

This data can be obtained with PC in an hour. However, 

in case of focused beams the highly non-linear beam 

density distribution and the hour-glass effect force to use 

spatial grid with higher resolution and, as a consequence, 

smaller time step and more computing steps. 

We present an example of numerical simulations for 

two counter monoenergetic beams, focused in the center 

of interaction region of length Lz= 0.2 cm. The vertical 

size of the domain is Lx= Ly= 2·10
-4

 cm. 

The density distributions of the beams in the crossover 

plane are described by Gaussian law with 

= 3.9·10
-6

 cm, the emittances εx=εy= 10
-9

 cm, 

and the beta-function values β*
x=β*

y= 1.5·10
-2

 cm, 

σz= 1.5·10
-2

 cm. We consider a case of vertical beam 

displacement Δy=10
-5

 cm ~ 3σx. 
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The transverse momenta x′ and y′ conform to Gaussian 
law with 2.6·10-4

. The charges of 

the beams are opposite, Q1= –Q2=2·1010
e, relativistic 

factors of all the particles are γ=4·10
5
 [6]. 

We used J=10
7
 particles for 100 x 100 x 100 grid. Such 

parameters cannot be taken using standard domain 

decomposition in three-dimensional case. 64 processors 

were distributed in 20 groups, so the minimum number of 

processors in a group was 1 and the maximum was 14. 

The computation time equaled to 18 hours at Siberian 

Super Computer Center (SSCC), 576 4-core processors 

Intel Xeon Е5450/E5540/X5670. 

 

 

 

Figure 3: Beam evolution, coordinates (z, x). 

 

 

 

Figure 4: Beam evolution, coordinates (z, y). 

The beam shapes in different instants of time: t=1/5T, 

t=2/5T, t=3/5T, t=4/5T, where T=0.1 is the complete 

single passage time, are shown at Fig. 3, 4 with black 

color. Fig. 3. shows beam coordinates (z,x) and illustrates 

symmetric motion of the beam with a focusing effect of 

the opposite beam field. Fig. 4. shows  beam coordinates 

(z,y) and points the kink-instability evolution. The grey 

color shadows coordinates of the counter beam. 

CONCLUSION 

New three-dimensional model and the corresponding 

parallel code for beam-beam simulation with high 

gamma-factors (10
3
-10

5
) has been developed. The 

algorithm is based on the domain and particle 

decomposition and allows performing numerical 

experiments for spatial grids 200x200x200 and particle 

number 10
8
. The simulation results are in correspondence 

with existing theory.  
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