08 Applications of Accelerators
U03 Transmutation and Power Generation
Paper Title Page
WEPRO109 Experimental Determination of Heavy Nuclei Fission Cross-sections under Relativistic Deuterons Irradiation on the Accelerator Complex “Nuclotron” for Purposes of Transmutation and Energy Amplification 2221
SUSPSNE112   use link to see paper's listing under its alternate paper code  
 
  • V.V. Bukhal, A.A. Patapenka, A.A. Safronava
    JIPNR-Sosny NASB, Minsk, Belarus
  • M. Artiushenko
    NSC/KIPT, Kharkov, Ukraine
  • K.V. Husak
    The Joint Institute of Power and Nuclear Reserach - "SOSNY" NASB, Minsk, Belarus
  • S.I. Tyutyunnikov
    JINR, Dubna, Moscow Region, Russia
 
  Experimental studies of neutron spectra of three different subcritical assemblies driven by an accelerator (Accelerator Driven Systems – ADS) for investigation of the possibility of transmutation and energy amplification have been carried out. The assemblies were constructed in the framework of the international project “Energy and Transmutation of Radioactive Wastes” and experiments with them are running in the Veksler and Baldin Laboratory of High Energy Physics of the Joint Institute for Nuclear Research (Dubna, Russia) at the accelerator complex “Nuclotron”. In this paper the results of measurements of 239Pu(n, f), 235U(n, f), 238U(n, f) and 238U(n,γ) reactions cross-sections and reactions rates using solid state nuclear track detectors and activation gamma-spectroscopy are presented. A comparison of the experimental results with FLUKA calculations is given. The obtained experimental values characterize the neutron spectra in the experimental points and allow the efficiency of the ADS technology for the systems with similar parameters to be evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO110 Power Plant Based on Subcritical Reactor and Proton LINAC 2224
SUSPSNE113   use link to see paper's listing under its alternate paper code  
 
  • A.G. Golovkina, I.V. Kudinovich, D.A. Ovsyannikov
    St. Petersburg State University, St. Petersburg, Russia
  • A.A. Bogdanov
    KSRC, St. Petersburg, Russia
 
  Nuclear power plant based on accelerator driven subcritical reactor (ADSR) is considered. Such systems demonstrate higher safety because the fission proceeds in subcritical core and necessary neutron flux is reached with external neutrons generated in target of heavy nuclides. In order to efficiently use ADSR for energy production, it’s needed the total power, generated in the reactor, to be greater than power inputs for charged particles acceleration. The plant driven by middle-energy accelerator, which is cheaper than high-energy accelerators, proposed for these purposes, is considered. So it’s necessary to find other ways to amplify reactor power outputs. Thus, the technical solution to increase power gain of small-sized power plant with a linear proton accelerator (energy 300-400 MeV, average current 5 mA) is proposed. Thermal power up to 300 MW was reached.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)