Author: Zhu, J.
Paper Title Page
TUPME042 Planned High-gradient Flat-beam-driven Dielectric Wakefield Experiments at the Fermilab’s Advanced Superconducting Test Accelerator 1451
 
  • F. Lemery, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot, J. Zhu
    Fermilab, Batavia, Illinois, USA
  • J. Zhu
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
 
  In beam driven dielectric wakefield acceleration (DWA), high-gradient short-wavelength accelerating fields are generally achieved by employing dielectric-lined waveguides (DLWs)  with small aperture which constraints the beam sizes. In this paper we investigate the possibility of using a low-energy (50-MeV) flat beams to induce high-gradient wakes in a slab-symmetric DLW. We demonstrate via numerical simulations the possibility to produce axial electric field with peak amplitude close to 0.5 GV/m. Our studies are carried out using the Fermilab's Advanced Superconducting Test Accelerator (ASTA) photoinjector beamline. We finally discuss a possible experiment that could be performed in the ASTA photoinjector and eventually at higher energies.    
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO086 Flat-beam Generation and Compression at Fermilab's Advanced Superconducting Test Accelerator 3086
 
  • J. Zhu, D. Mihalcea, P. Piot
    Fermilab, Batavia, Illinois, USA
  • D. Mihalcea, P. Piot, C.R. Prokop
    Northern Illinois University, DeKalb, Illinois, USA
 
  An important asset of Fermilab’s Advanced Superconducting Test Accelerator (ASTA) is its ability to generate flat beams with high-transverse emittance ratios. In this paper, we present a practical design and simulation of flat beam generation and compression with various bunch charges up to 3.2 nC. Emittance growth within the round-to-flat beam transformer and the impact of low energy compression is discussed in detail. Finally, it is found that the compressed flat beam could provide exciting opportunities in the field of advanced acceleration techniques and accelerator-based light source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)