Author: Yoshikawa, C.Y.
Paper Title Page
TUPME016 Status of the Complete Muon Cooling Channel Design and Simulations 1379
 
  • C.Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, S.A. Kahn, F. Marhauser
    Muons, Inc, Illinois, USA
  • Y.I. Alexahin, D.V. Neuffer, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • Y.S. Derbenev, V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported in part by DOE STTR grant DE-SC 0007634.
Muon colliders could provide the most sensitive measurement of the Higgs mass and return the US back to the Energy Frontier. Central to the capabilities of such muon colliders are the cooling channels that provide the extraordinary reduction in emittance required for the precise Higgs mass measurement and increased luminosity for enhanced discovery potential of an Energy Frontier Machine. We present the status of the design and simulation of a complete muon cooling channel that is based on the Helical Cooling Channel (HCC), which operates via continuous emittance exchange to enable the most efficient design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME017 Design and Simulation of a Matching System into the Helical Cooling Channel 1382
 
  • C.Y. Yoshikawa
    MuPlus, Inc., Newport News, Virginia, USA
  • Y.I. Alexahin, D.V. Neuffer, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • C.M. Ankenbrandt, R.P. Johnson, S.A. Kahn, F. Marhauser
    Muons, Inc, Illinois, USA
  • Y.S. Derbenev, V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported in part by DOE STTR grant DE-SC 0007634.
Muon colliders could provide the most sensitive measurement of the Higgs mass and return the US back to the Energy Frontier. Central to the capabilities of muon colliders are the cooling channels that provide the extraordinary reduction in emittance required for the precise Higgs mass measurement and increased luminosity for enhanced discovery potential of an Energy Frontier Machine. The Helical Cooling Channel (HCC) is able to achieve such emittance reduction and matching sections within the HCC have been successfully designed in the past with lossless transmission and no emittance growth. However, matching into the HCC from a straight solenoid poses a challenge, since a large emittance beam must cross transition. We elucidate on the challenge and present evaluations of two solutions, along with concepts to integrate the operations of a Charge Separator and match into the HCC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)