Author: Wing, M.
Paper Title Page
TUPRO074 Emittance Growth due to Multiple Coulomb Scattering in a Linear Collider based on Plasma Wakefield Acceleration 1211
 
  • Ö. Mete, K. Hanahoe, G.X. Xia
    UMAN, Manchester, United Kingdom
  • O. Karamyshev, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Labiche
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Wing
    UCL, London, United Kingdom
 
  Alternative acceleration technologies are currently under development for cost-effective, robust, compact and efficient solutions. One such technology is plasma wakefield accel- eration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance growth of the witness beam through elastic scattering from gaseous media is derived. The model is compared with the numerical studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME079 A Spectrometer for Proton Driven Plasma Wakefield Accelerated Electrons at AWAKE 1540
 
  • S. Jolly, L.C. Deacon, J.A. Goodhand, S.R. Mandry, M. Wing
    UCL, London, United Kingdom
  • S.R. Mandry
    MPI, Muenchen, Germany
 
  The AWAKE experiment is to be constructed at the CERN Neutrinos to Gran Sasso facility (CNGS). This will be the first experiment to demonstrate electron acceleration by use of a proton driven plasma wakefield. The 400 GeV proton beam from the CERN SPS will excite a wakefield in a plasma cell several metres in length. To observe the plasma wakefield, electrons of a few MeV will be injected into the wakefield following the head of the proton beam. Simulations indicate that electrons will be accelerated to GeV energies by the plasma wakefield. The AWAKE spectrometer is intended to measure both the peak energy and energy spread of these accelerated electrons. The baseline design makes use of a single dipole magnet to separate the electrons from the proton beam. The dispersed electron beam then impacts on a scintillator screen: the resulting scintillation light is collected and recorded by an intensified CCD camera. The design of the spectrometer is detailed with a focus on the scintillator screen. Results of simulations to optimise the scintillator are presented, including studies of the standard GadOx scintillators commonly used for imaging electrons in plasma wakefield experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)