Author: Wang, G.M.
Paper Title Page
TUPRI069 NSLS-II Commissioning with 500 MHZ 7-CELL PETRA-III Cavity 1724
 
  • A. Blednykh, G. Bassi, W.X. Cheng, J. Choi, Y. Hidaka, S.L. Kramer, Y. Li, B. Podobedov, J. Rose, T.V. Shaftan, G.M. Wang, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II storage ring has been commissioned during Phase 1 with 500 MHz 7-cell PETRA-III RF cavity. In this paper we present our first beam-measured data on instabilities and collective effects with a normal conducting RF system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO018 Theoretical Maximum Current of the NSLS-II Linac 1980
 
  • R.P. Fliller, F. Gao, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An analysis of the maximum available NSLS-II linac current was performed as part of the preparation for NSLS-II Booster commissioning. The analysis was necessary in order to establish the maximum beam current available from the linac and the maximum current that would be available to the booster accelerator. In this paper we discuss the assumptions that were used in determining the maximum linac current, the model of the linac and comparison to operational conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)