Author: Wanderer, P.
Paper Title Page
WEPRI086 Three Dimensional Field Analysis for Final Focus Magnet System at SuperKEKB 2690
 
  • Y. Arimoto, N. Ohuchi, M. Tawada, K. Tsuchiya, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
  • B. Parker, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  SuperKEKB is an upgrade accelerator of KEKB with a design luminosity of 8x1035 cm-2 s-1. The design is based on a "nano-beam scheme", where vertical beam size is squeezed into 50 nm at an interaction point. One of key component is a final focus magnet system. The focusing system consists of 4-superconducting (SC) quadrupole doublets, 43 SC-correctors, 4 SC-compensation solenoids. They are aligned in a detector (Belle-II) solenoid which generates a longitudinal field of 1.5 T. The system are packed in a small area and also has magnetic shields. So it is expected an entire magnetic field of the system is not one which is linearly-superimposed field of each magnet. Here a study of three dimensional field analysis for the final focus magnet system will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI101 Iron Shims outside the Helium Vessel to Adjust Field Quality at High Fields 2734
 
  • R.C. Gupta, M. Anerella, J.P. Cozzolino, A.K. Jain, J.F. Muratore, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE¬AC02-98CH10886.
This paper describes the development and demonstration of a novel technique of adjusting measured field quality at the design field in superconducting magnets. The technique is based on placing iron shims of variable stack thicknesses, variable width and/or variable length on the outer surface of the stainless steel shell at strategic locations. Since the shims are placed outside the helium vessel, adjustments can be made without involving major operations such as opening the helium vessel. It is a simple and economical technique which is suitable for long magnets with a fast turn-around. This allows one to reduce field errors well beyond the normal construction errors. The technique has recently been successfully applied in two 3.8 T, 80 mm aperture, 9.45 m long dipoles. These magnets were built at Brookhaven National Laboratory (BNL) for the APUL project (Accelerator Project to Upgrade the LHC) as a part of US contribution to LHC. The paper will present the design, measurement and adaptation of this technique which, when used in combination with the coil shims, produced near zero sextupole harmonic at high fields and small harmonics throughout the range of operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)