Author: Tomassini, S.
Paper Title Page
TUPRI049 Geometric Beam Coupling Impedance of LHC Secondary Collimators 1677
SUSPSNE059   use link to see paper's listing under its alternate paper code  
 
  • O. Frasciello, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A. Grudiev, N. Mounet, B. Salvant
    CERN, Geneva, Switzerland
 
  Funding: Work supported by European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep under control beam instabilities and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are the main impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were by about a factor of 2 higher with respect to the theoretical predictions based on the current model. Up to now the resistive wall impedance has been considered as the major impedance contribution for collimators. By carefully simulating their geometric impedance we show that for the graphite collimators with half-gaps higher than 10 mm the geometric impedance exceeds the resistive wall one. In turn, for the tungsten collimators the geometric impedance dominates for all used gap values. Hence, including the geometric collimator impedance into the LHC impedance model enabled us to reach a better agreement between the measured and simulated collimator tune shifts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI001 Design of a High Luminosity Tau/Charm Factory 3757
 
  • M.E. Biagini, R. Boni, M. Boscolo, A. Chiarucci, R. Cimino, A. Clozza, E. Di Pasquale, A. Drago, S. Guiducci, C. Ligi, G. Mazzitelli, R. Ricci, C. Sanelli, M. Serio, A. Stella, S. Tomassini
    INFN/LNF, Frascati (Roma), Italy
  • S. Bini, F. Cioeta, D. Cittadino, M. D'Agostino, M. Del Franco, A. Delle Piane, G. Frascadore, R. Gargana, S. Gazzana, S. Incremona, A. Michelotti, L. Sabbatini
    Consorzio Laboratorio Nicola Cabibbo, Frascati, Italy
  • N. Carmignani, S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • R. Petronzio
    Università di Roma II Tor Vergata, Roma, Italy
  • M.T.F. Pivi
    IMS Nanofabrication AG, Vienna, Austria
  • G. Schillaci, M. Sedita
    INFN/LNS, Catania, Italy
 
  The design of a high luminosity Tau/Charm Factory has been accomplished by the INFN-LNF Laboratory in Frascati in collaboration with the Consortium Nicola Cabibbo Laboratory. The target luminosity is 1035 cm-2 ses−1 at 4.6 GeV in the center of mass. This design is a natural evolution of the SuperB B-Factory, that was aimed to be built in the Rome Tor Vergata University campus as an Italian Flagship Project. The Tau/Charm design keeps all the features that made SuperB a state-of-the art accelerator, such as the “large Piwinski angle and crab waist sextupoles” collision scheme, the super squeezed beams, and the polarized electron beam. As a plus, it will be possible to collect data at high luminosity in a large energy range (2 to 4.6 GeV c. m.), with a peak luminosity target of 1034 cm-2 ses−1 at 2 GeV. The possibility to extend the Linac for a SASE-FEL facility is also taken into account. A Conceptual Design Report* was published in September 2013. In this paper the design principles and the project features are reviewed.
* Tau/Charm Factory Accelerator Report, INFN Report INFN-13-13/LNF, September 2013, arXiv:1310.6944 [physics.acc-ph]
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)