Author: Todesco, E.
Paper Title Page
WEPRI094 Conceptual Design Study of the High Luminosity LHC Recombination Dipole 2712
 
  • G.L. Sabbi, X. Wang
    LBNL, Berkeley, California, USA
  • G. Arduini, M. Giovannozzi, E. Todesco
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. DOE LHC Accelerator Research Program. The HiLumi LHC Design Study is partly funded by the European Commission within the Framework Programme 7.
The interaction region design of the High-Luminosity LHC requires replacing the recombination dipole magnets (D2) with new ones. The preliminary specifications include an aperture of 105 mm, with 186 mm separation between the twin-aperture axes, and an operating field in the range of 3.5 to 4.5 T. The main design challenge is to decouple the magnetic field in the two apertures and ensure good field quality. In this paper, we present a new approach to address these issues, and provide expected harmonics for geometric, saturation and persistent current effects. The feasibility of an operating field at the high end of the range considered is also discussed, to minimize the D2 magnet length and facilitate the space allocation for other components.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO080 The FiDeL Model at 7 TeV 3069
 
  • N. Aquilina, M. Giovannozzi, P. Hagen, M. Lamont, A. Langner, E. Todesco, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
  • N.J. Sammut
    University of Malta, Information and Communication Technology, Msida, Malta
 
  After the long shut down of 2013-2014, the LHC energy will be pushed toward 7 TeV. In this range of energy, the main magnets will enter a new regime. For this reason, this paper will present a detailed study of the performance of the FiDeL model that could be critical for the operation in 2015. In particular this paper will study the saturation component and its precision in the model, together with the hysteresis error. The effect of these two components and their errors on the beta-beating is also given. Furthermore, an estimate of the dynamic effects visible in the tune and chromaticity will be presented for the 7 TeV operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)