Author: Tantawi, S.G.
Paper Title Page
WEPRI068 Conceptual Design of an Ideal Variable Coupler for Superconducting Radiofrequency 1.3 GHz Cavities 2648
 
  • C. Xu, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  We present a new type of fundamental mode accelerator structure coupler. This coupler has a very simplified mechanical structure and is equipped with a novel vacuum window structure that allows the coupler to be divided into two parts. These two parts are fully thermally isolated, only coupled by thermal radiation. The rf power on the other hand get coupled perfectly from one part to the other. This is truly novel approach which is quite different than the conventional approach to this problem such as chock structure. The structure in general is slightly overmoded. We show that this structure can also be adopted to change the coupling coefficient and thus be tuned for an external Q. This could be of great utility for CW operation. We show the analytical and numerical calculation for a two window variable coupler.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI075 S-Band Structure Study for the MaRIE Project 3940
 
  • Z. Li, C. Adolphsen, M.V. Fazio, S.G. Tantawi, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work was supported by the US Department of Energy through the LANL/LDRD Program.
The Matter-Radiation Interactions in Extremes (MaRIE) facility proposed at LANL utilizes a 20-GeV electron linac to drive a 50-keV XFEL. Experimental requirements drive a need for multiple photon bunches over time durations of about 10 microsecond produced by a bunch train of interleaving 0.1 nC very low-emittance bunches with 2-nC electron bunches. The linac is required not only to provide high gradient and high efficient acceleration, but also a controlled wakefield profile to maintain the beam quality. In this paper, we explore the feasibility of using the S-Band technology to meet such acceleration requirements. We will present the design optimization and comparison of S-Band structures based on different design considerations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)