Author: Tan, C.-Y.
Paper Title Page
MOPRI016 Hydrogen and Cesium Monitor for H Magnetron Sources 617
 
  • C.-Y. Tan, D.S. Bollinger, B.A. Schupbach, K. Seiya
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energ
The relative concentration of cesium to hydrogen in the plasma of a H magnetron source is an important parameter for reliable operations. If there is too much cesium, the surfaces of the source become contaminated with it and sparking occurs. If there is too little cesium then the plasma cannot be sustained. In order to monitor these two elements, a spectrometer has been built and installed on a test and operating source that looks at the plasma. It is hypothesized that the concentration of each element in the plasma is proportional to the intensity of their spectral lines.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI061 Perpendicular Biased Ferrite Tuned Cavities for the Fermilab Booster 3911
 
  • G.V. Romanov, M.H. Awida, T.N. Khabiboulline, W. Pellico, C.-Y. Tan, I. Terechkine, V.P. Yakovlev, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  The aging Fermilab Booster RF system needs an upgrade to support future experimental program. The important feature of the upgrade is substantial enhancement of the requirements for the accelerating cavities. The new requirements include enlargement of the cavity beam pipe aperture, increase of the cavity voltage and increase in the repetition rate. The modification of the present traditional parallel biased ferrite cavities is rather challenging. An alternative to rebuilding the present Fermilab Booster RF cavities is to design and construct new perpendicular biased RF cavities, which potentially offer a number of advantages. An evaluation and a preliminary design of the perpendicular biased ferrite tuned cavities for the Fermilab Booster upgrade is described in the paper. Also it is desirable for better Booster performance to improve the capture of beam in the Booster during injection and at the start of the ramp. One possible way to do that is to flatten the bucket by introducing second harmonic cavities into the Booster. This paper also looks into the option of using perpendicularly biased ferrite tuners for the second harmonic cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)