Author: Takao, M.
Paper Title Page
MOPRO083 Design Study of High Brilliant Optics at the SPring-8 Storage Ring 283
 
  • Y. Shimosaki, T. Aoki, K. Fukami, K.K. Kaneki, K. Kobayashi, M. Masaki, C. Mitsuda, H. Ohkuma, M. Shoji, K. Soutome, S. Takano, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
 
  At the SPring-8 storage ring, design study of beam optics concentrating particularly on increasing brilliance, not flux density, is in progress besides continuous efforts of increasing both brilliance and flux density for the user optics. The natural emittances are theoretically reduced from 2.41 nmrad at 8 GeV to 2.27 nmrad (8 GeV), 1.78 nmrad (7 GeV) and 1.33 nmrad (6 GeV) by utilizing an emittance damping effect by the insertion devices. The designed optics has experimentally been examined at 6 GeV, and the electron beam parameters have been confirmed by measurements at the diagnostics beamlines.
* Y. Shimosaki et al., “New Optics with Emittance Reduction at the SPring-8 Storage Ring”, IPAC13, MOPEA027.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI050 Numerical Calculation and Experiment of Ion Related Phenomenon in SPring-8 Storage Ring 1680
 
  • A. Mochihashi, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
 
  In the SPring-8 storage ring, various kinds of bunch filling pattern are available. Under some bunch filling patterns, residual gas ions created by scattering process between high energy electrons and residual gas molecules can be trapped stably around the electron beam and disturb the original motion of the beam. We have considered the stability of the electron beam due to the ion related phenomenon under several bunch filling patterns by computer simulation. In the simulation, we have modeled the electron bunch as single particle and the residual gas ions as macroparticles. The number of the trapped ions, size of the ion cloud and change in betatron oscillation amplitude of the beam under several filling pattern conditions will be discussed. We have also performed experiments for stability of the beam under equally spaced bunch filling patterns which give severe condition for the ion related instability. The numerical calculations and the experimental results will be discussed in the presentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO066 Correction of the Higher Order Dispersion for Improving Momentum Acceptance 3029
 
  • M. Takao, K.K. Kaneki, Y. Shimosaki, K. Soutome
    JASRI/SPring-8, Hyogo-ken, Japan
 
  May 2013 we lowered the emittance of the SPring-8 storage ring from 3.5 nm¥cdotrad to 2.4 nm¥cdotrad to enhance the brilliance. At the optics change the momentum acceptance shrunk from 3.2 ¥% to 2.4 ¥%. Then, by carefully correcting the second order dispersion, we recovered the momentum acceptance up to 2.8 ¥%, which results in doubling the Touschek beam lifetime. Although the injection efficiency decreased by more than 10 ¥% by the dispersion correction, we restored it by means of suppressing the amplitude dependent tune shift. Here we describe these improvements of the nonlinear dynamics of the SPring-8 storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)