Author: Stein, O.
Paper Title Page
WEPRO114 SALOME: An Accelerator for the Practical Course in Accelerator Physics 2235
 
  • V. Miltchev, D. Riebesehl, J. Roßbach, M. Trunk
    Uni HH, Hamburg, Germany
  • O. Stein
    CERN, Geneva, Switzerland
 
  SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME172 Experimental Results from the Characterization of Diamond Particle Detectors with a High Intensity Electron Beam 3671
 
  • F. Burkart, R. Schmidt, O. Stein, D. Wollmann
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  Understanding the sources of ultra-fast failures, with durations of less than 3 LHC turns, is important for a safe operation of the LHC, as only passive protection is possible in these time scales. Diamond particle detectors with bunch-by-bunch resolution and high dynamic range have been successfully used to improve the understanding of some new ultra-fast loss mechanisms discovered in the LHC. To fully exploit their potential, diamond detectors were characterized with a high-intensity electron beam (105 to 1010 electrons per shot). For the first time their efficiency and linearity has been measured in such a wide range of intensities. In this paper the experimental setup will be described and the signals of the different detectors will be discussed. Finally, future applications of these detectors in high-radiation applications will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME172  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)