Author: Steerenberg, R.
Paper Title Page
MOPRI099 Feasibility Studies for 100 GeV Beam Transfer Lines for a CERN Neutrino Facility 849
 
  • M. Kowalska, W. Bartmann, C. Bracco, B. Goddard, M. Nessi, R. Steerenberg, F.M. Velotti
    CERN, Geneva, Switzerland
 
  For a potential future CERN neutrino facility it is considered to extract a 100 GeV proton beam from the second long straight section in the SPS into the existing TT20 transfer line leading to the North Area. Two transfer line design options were developed simultaneously: early-branching from TT20 using existing, recuperated ‘experimental area’ DC dipoles and alternatively late-branching close to the target area, which requires superconducting magnets. This paper describes the feasibility of the two concepts in addition to the detailed study of the early-branching option. Optics and line geometry optimization are discussed and orbit correction is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME068 Optics Design of the High-power Proton Synchrotron for LAGUNA-LBNO 3391
 
  • Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, I. Efthymiopoulos, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Funding: Work supported by EC/FP7 grant 284518
The prospects for future high-power proton beams for producing neutrinos at CERN within the LAGUNA-LBNO study, include the design of a 2 MW High-Power Pro- ton Synchrotron (HP-PS). In this paper, the optics design of the ring is reviewed, comprising Negative Momentum Compaction (NMC) arc cells and quadrupole triplet long straight sections, flexible enough to achieve the constraints imposed mainly by different beam transfer equipment and processes. A global tunability study is undertaken includ- ing aperture and magnet parameter considerations. Basic correction systems are specified and their impact to beam dynamics including dynamic aperture is finally evaluated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)