Author: Skordis, E.
Paper Title Page
MOOCB01 Beam-induced Quench Tests of LHC Magnets 52
 
  • M. Sapinski, B. Auchmann, T. Bär, W. Bartmann, M. Bednarek, S. Bozyigit, C. Bracco, R. Bruce, F. Cerutti, V. Chetvertkova, K. Dahlerup-Petersen, B. Dehning, E. Effinger, J. Emery, A. Guerrero, E.B. Holzer, W. Höfle, A. Lechner, A. Priebe, S. Redaelli, B. Salvachua, R. Schmidt, N.V. Shetty, A.P. Siemko, E. Skordis, M. Solfaroli Camillocci, J. Steckert, J.A. Uythoven, D. Valuch, A.P. Verweij, J. Wenninger, D. Wollmann, M. Zerlauth, E.N. del Busto
    CERN, Geneva, Switzerland
 
  At the end of the LHC Run1 a 48-hour quench-test campaign took place to investigate the quench levels of superconducting magnets for loss durations from nanoseconds to tens of seconds. The longitudinal losses produced extended from one meter to hundreds of meters and the number of lost protons varied from 108 to 1013. The results of these and other, previously conducted quench experiments, allow the quench levels of several types of LHC magnets under various loss conditions to be assessed. The quench levels are expected to limit LHC performance in the case of steady-state losses in the interaction regions and also in the case of fast losses initiated by dust particles all around the ring. It is therefore required to accurately adjust beam loss abort thresholds in order to maximize the operation time. A detailed discussion of these quench test results and a proposal for additional tests after the LHC restart is presented.  
slides icon Slides MOOCB01 [2.737 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOOCB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO021 Power Deposition in LHC Magnets With and Without Dispersion Suppressor Collimators Downstream of the Betatron Cleaning Insertion 112
 
  • A. Lechner, B. Auchmann, R. Bruce, F. Cerutti, P.P. Granieri, A. Marsili, S. Redaelli, N.V. Shetty, E. Skordis, G.E. Steele, A.P. Verweij
    CERN, Geneva, Switzerland
 
  The power deposited in dispersion suppressor (DS) magnets downstream of the LHC betatron cleaning insertion is governed by off-momentum protons which predominantly originate from single-diffractive interactions in primary collimators. With higher beam energy and intensities anticipated in future operation, these clustered proton losses could possibly induce magnet quenches during periods of short beam lifetime. In this paper, we present FLUKA simulations for nominal 7 TeV operation, comparing the existing layout with alternative layouts where selected DS dipoles are substituted by pairs of shorter higher-field magnets and a collimator. Power densities predicted for different collimator settings are compared against present estimates of quench limits. Further, the expected reduction factor due to DS collimators is evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)