Author: Shirkov, G.
Paper Title Page
WEPRI090 Cyclotron C235-V3 for Dimitrovgrad Hospital Center of the Proton Therapy 2703
 
  • S.A. Kostromin, S. Gurskiy, G.A. Karamysheva, M.Y. Kazarinov, S.A. Korovkin, S.P. Mokrenko, N.A. Morozov, A.G. Olshevsky, V.M. Romanov, E. Samsonov, N.G. Shakun, G. Shirkov, S.G. Shirkov, E. Syresin
    JINR, Dubna, Moscow Region, Russia
  • P. Cahay, Y. Jongen, Y. Paradis
    IBA, Louvain-la-Neuve, Belgium
 
  JINR-IBA C235-V3 isochronous cyclotron for 1st Russian hospital center of the proton therapy has been assembled and tested. Shimming of the magnetic field, optimization of the acceleration modes and testing with the extracted proton beam were done in frame of this work. The paper presents experimental results of the beam dynamics in the accelerator. Proton transmission from radius 30cm to 103cm is 72% without beam cutting diaphragms. The extraction efficiency is 62%. This cyclotron is a substantially modified version C235-V3 of the IBA C235 serial cyclotron. C235-V3 has the improved extraction system which was constructed and tested. This system allows raise the extraction efficiency up to 77% from 50% in comparison with serial C235. Special mapping system (for Br-component) of the magnetic field was developed and constructed by JINR for the shimming of the Br-field in the middle plane of the cyclotron. Total efficiency of the machine is 45%. Further improvement of the parameters expected after final tuning of the cyclotron in Dimitrovgrad.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO022 JINR Powerful Laser Driver Applied for FEL Photoinjector 2906
 
  • E. Syresin, N. Balalykin, M.A. Nozdrin, G. Shirkov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • E. Gacheva, E. Khazanov, G. Luchinin, S. Mironov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: The work is funded by the German Federal Ministry of education and Research, project 05K10CHE.
The JINR develops a project of superconducting linear accelerator complex, based on a superconducting linear accelerator, for applications in nanoindustry, mainly for extreme ultraviolet lithography at a wavelength of 13.5 nm using kW-scale Free Electron Laser (FEL) light source. The application of kW-scale FEL source permits realizing EUV lithography with 22 nm, 16 nm resolutions and beyond. JINR-IAP collaboration constructed powerful laser driver applied for photoinjector of FEL linear accelerator which can be used for EUV lithography. To provide FEL kW-scale EUV radiation the photoinjector laser driver should provide a high macropulse repetition rate of 10 Hz, a long macropulse time duration of 0.8 ms and 8000 pulses per macropulse. The laser driver operates at wavelength of 260-266 nm on forth harmonic in the mode locking on base of Nd ions or Yb ions The laser driver micropulse energy of 1.6 uJ should provide formation of electron beam in FEL photoinjector with the bunch charge about 1 nC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)