Author: Shemyakin, A.V.
Paper Title Page
MOPRI086 Status of the PXIE Low Energy Beam Transport Line 812
 
  • L.R. Prost, R. Andrews, A.Z. Chen, B.M. Hanna, V.E. Scarpine, A.V. Shemyakin, J. Steimel
    Fermilab, Batavia, Illinois, USA
  • R.T.P. D'Arcy
    UCL, London, United Kingdom
 
  Funding: Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy
A CW-compatible, pulsed H superconducting RF linac (a.k.a. PIP-II) is envisaged as a possible path for upgrading Fermilab’s injection complex [1]. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) [2] is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a MEBT that feeds the first cryomodule. In addition to operating in the nominal CW mode, the LEBT should be able to produce a pulsed beam for both PXIE commissioning and modelling of the front-end nominal operation in the pulsed mode. Concurrently, it needs to provide effective means of inhibiting beam as part of the overall machine protection system. A peculiar feature of the present LEBT design is the capability of using the ~1m-long section immediately preceding the RFQ in two regimes of beam transport dynamics: neutralized and space charge dominated. This paper introduces the PXIE LEBT, reports on the status of the ion source and LEBT installation, and presents the first beam measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI084 Testing Results of the Prototype Beam Absorber for the PXIE MEBT 3967
 
  • C.M. Baffes, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the United States Department of Energy
One of the goals of the PXIE program at Fermilab is to demonstrate the capability to form an arbitrary bunch pattern from an initially CW 162.5 MHz H bunch train coming out of an RFQ. The bunch-by-bunch selection will take place in the 2.1 MeV Medium Energy Beam Transport (MEBT) by directing the undesired bunches onto an absorber that needs to withstand a beam power of up to 21 kW, focused onto a spot with a ~2 mm rms radius. A prototype of the absorber was manufactured from molybdenum alloy TZM, and tested with an electron beam up to the peak surface power density required for PXIE, 17W/mm2. Temperatures and flow parameters were measured and compared to analysis. This paper describes the absorber prototype and key testing results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)