Author: Shafiee, M.Sh.
Paper Title Page
MOPRO069 Progress Status of the Iranian Light Source Facility Laboratory 240
 
  • J. Rahighi, E. Ahmadi, H. Ajam, M. Akbari, S. Amiri, J. Dehghani, R. Eghbali, S. Fatehi, M. Fereidani, A. Gholampour, A. Iraji, M. Jafarzadeh, B. Kamkari, S. Kashani, P. Khodadoost, H. Khosroabadi, M. Lamehi, M. Moradi, H. Oveisi, S. Pirani, M. Rahimi, N. Ranjbar, R. Rasoli, M. Razazian, A. Sadeghipanah, F. Saeidi, R. Safian, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, A. Shahveh, Z. Shahveh, A. Shahverdi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • H. Ghasem
    IPM, Tehran, Iran
 
  The Iranian Light Source Facility Project (ILSF) is a 3 GeV third generation light source with a current of 400 mA which will be built on a land of 50 hectares area in the city of Qazvin, located 150 km West of Tehran. ILSF conceptual design report, CDR, was published in October 2012. To have a competitive leading position in the future, 489.6 m storage ring of ILSF is designed to emphasize on small emittance electron beam( 0.93 nm-rad), high photon flux density, brightness, stability and reliability. Moreover, 40% of 489.6 m ring circumference is straight sections (14×8 m+ 14×6 m) which are long enough for the commonly used insertion devices. Some prototype accelerator components such as high power solid state radio frequency amplifiers, LLRF system, thermionic RF gun, Storage ring H-type dipole and quadruple magnets, Hall probe system for magnetic measurement and highly stable magnet power supplies have been constructed in ILSF R&D laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME126 General Consideration for Button-BPM Design 3537
SUSPSNE071   use link to see paper's listing under its alternate paper code  
 
  • A.R. Molaee, M.Sh. Shafiee
    ILSF, Tehran, Iran
  • M. Mohammadzadeh
    Shahid Beheshti University, Evin, Tehran, Iran
  • M. Samadfam
    Sharif University of Technology (SUT), Tehran, Iran
 
  In order to design Button Beam Position Monitors (BPMs) for synchrotron facilities, one algorithm by C# have been developed which can calculate all required parameters to analyze optimal design based on vacuum chamber and button dimensions. Beam position monitors are required to get beam stabilities on submicron levels. For this purpose, different parameters such as capacitance, sensitivity versus bandwidth, intrinsic resolution, induced charge and voltage on buttons are calculated. Less intrinsic resolution and high sensitivity and capacitance are desired. To calculate induced charge and voltage on each button, Poisson's equation has been solved by Green method. For sensitivities calibration, two-dimensional map of BPM response is obtained theoretically and compared with the CST simulation map. Results show a good agreement where as their difference is less than 5%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)