Author: Schmidt, J.F.
Paper Title Page
TUPRO039 Optimizing Polarization with an Improved Integer Resonance Correction Scheme at ELSA 1108
 
  • J.F. Schmidt, O. Boldt, F. Frommberger, W. Hillert, J.-P. Thiry
    ELSA, Bonn, Germany
 
  Funding: DFG
The Electron Stretcher Facility ELSA of Bonn University provides a polarized electron beam of up to 3.2 GeV. In the stretcher ring various depolarizing resonances are crossed during the fast energy ramp of 6 GeV/s. The high polarization degree of up to 70% can only be conserved by taking several appropriate countermeasures. Concerning integer resonances, additional harmonic horizontal fields are applied by orbit correction magnets around the ring to compensate the resonance driving fields. The correction field has to be adjusted by empirical optimization of polarization. Recent developments enhance this optimization process, especially at high energies: A new magnet system allows for higher correction amplitudes and shorter rising times. Furthermore, a modified correction scheme was implemented. It takes into account the additional fields of the quadrupole magnets, arising from the orbit response of the correction magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO040 High Bandwidth Closed Orbit Control for a Fast Ramping Electron Accelerator 1111
 
  • J.-P. Thiry, A. Dieckmann, F. Frommberger, W. Hillert, J.F. Schmidt
    ELSA, Bonn, Germany
 
  ELSA is a fast ramping stretcher ring capable of acceleration and storage of polarized electrons with energies up to 3.2 GeV. To preserve the initial degree of polarization, the acceleration is performed by a fast energy ramp with a maximum ramping speed of 6 GeV/s. During acceleration especially the vertical orbit needs to be continuously corrected so that the vertical rms deviation does not exceed 50 μm at any time. In order to compensate the so called integer resonances, which occur at certain energies, the orbit correction system further needs to provide additional, empirically determined, harmonic field distributions. A successful application of these combined correction measures requires a considerably high bandwidth of up to some 100 Hz. In our contribution we will have a closer look at the performance and the acquired bandwidth of the correction system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)