Author: Schlott, V.
Paper Title Page
MOPRO066 Status of FLUTE 231
 
  • M. Schuh, I. Birkel, A. Borysenko, A. Böhm, N. Hiller, E. Huttel, S. Höninger, V. Judin, S. Marsching, A.-S. Müller, A.-S. Müller, A.-S. Müller, S. Naknaimueang, M.J. Nasse, R. Rossmanith, R. Ruprecht, M. Schwarz, M. Weber, P. Wesolowski
    KIT, Eggenstein-Leopoldshafen, Germany
  • R.W. Aßmann, M. Felber, K. Flöttmann, M. Hoffmann, H. Schlarb
    DESY, Hamburg, Germany
  • H.-H. Braun, R. Ganter, V. Schlott, L. Stingelin
    PSI, Villigen PSI, Switzerland
 
  FLUTE, a new linac-based test facility and THz source is currently being built at the Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It consists of an RF photo gun and a traveling wave linac accelerating electrons to beam energies of ~41 MeV in the charge range from a few pC up to 3 nC. The electron bunch will then be compressed in a magnetic chicane in the range of 1 - 300 fs, depending on the charge, in order to generate coherent THz radiation with high peak power. An overview of the simulation and hardware status is given in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI079 Test Results of the Libera Sync 3 CW Reference Clock Transfer System 1751
 
  • P. Orel, E. Janezic, P.L. Lemut, S. Zorzut
    I-Tech, Solkan, Slovenia
  • S. Hunziker, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  The new Libera Sync 3 CW reference clock transfer system has been specifically designed to meet the strict requirements of the latest fourth generation light sources, such as the Swiss FEL. The system has been co-developed with the Paul Scherrer Institute (PSI). It has been produced and tested at Instrumentation Technologies (I-Tech) and later installed at PSI. In this article we give a general overview of the system and its functionalities. We also present a brief overview of the supporting products that have been developed in order to enable testing at the level of performance discussed. Finally, we focus on presenting some of the test results obtained at I-Tech and PSI showing the performance capabilities and limitations of the system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOBB02 Status of Single-shot EOSD Measurement at ANKA 1909
 
  • N. Hiller, A. Borysenko, E. Hertle, V. Judin, B. Kehrer, S. Marsching, A.-S. Müller, M.J. Nasse, M. Schuh, P. Schönfeldt, N.J. Smale, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • P. Peier, B. Steffen
    DESY, Hamburg, Germany
  • V. Schlott
    PSI, Villigen PSI, Switzerland
 
  Funding: This work is funded by the BMBF contract numbers: 05K10VKC, 05K13VKA.
ANKA is the first storage ring in the world with a near-field single-shot electro-optical (EO) bunch profile monitor. The method of electro-optical spectral decoding (EOSD) uses the Pockels effect to modulate the longitudinal electron bunch profile onto a long, chirped laser pulse passing through an EO crystal. The laser pulse is then analyzed with a single-shot spectrometer and from the spectral modulation, the temporal modulation can be extracted. The setup has a sub-ps resolution (granularity) and can measure down to bunch lengths of 1.5 ps RMS for bunch charges as low as 30 pC. With this setup it is possible to study longitudinal beam dynamics (e. g. microbunching) occurring during ANKA's low-alpha-operation, an operation mode with compressed bunches to generate coherent synchrotron radiation in the THz range. In addition to measuring the longitudinal bunch profile, long-ranging wake-fields trailing the electron bunch can also be studied, revealing bunch-bunch interactions.
 
slides icon Slides WEOBB02 [12.753 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEOBB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME169 Status of the New Beam Size Monitor at SLS 3662
 
  • J. Breunlin, Å. Andersson
    MAX-lab, Lund, Sweden
  • N. Milas
    LNLS, Campinas, Brazil
  • M. Rohrer, Á. Saá Hernández, V. Schlott, A. Streun
    PSI, Villigen PSI, Switzerland
 
  The Swiss Light Source (SLS) campaign on vertical emittance minimization and measurement required a beam size monitor with the ability to verify a sub-pmrad vertical emittance. This corresponds to a beam height of less than 4 μm. Within the TIARA Work Package ‘SLS Vertical Emittance Tuning’ a new beam size monitor was designed and built. The monitor is based on the imaging of the pi-polarized synchrotron radiation (SR) in the visible and UV spectral ranges. Besides imaging the monitor provides interferometric methods using vertically or horizontally polarized SR. With these complementary methods the consistency of beam size measurements is verified. An intermediate configuration of the monitor beamline using a lens as the focusing element has been commissioned in 2013. With this setup a vertical beam size of 4.8±0.5 μm, corresponding to a vertical emittance of 1.7±0.4 pmrad has been measured. During 2014 the monitor was commissioned in its final configuration with a toroidal mirror. The use of reflective optics allows wider bandwidth imaging and thus higher intensity. We report on challenges during commissioning and present first images of SR taken with the toroidal mirror.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME169  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)