Author: Schaelicke, A.     [Schälicke, A.]
Paper Title Page
TUPRI043 Analysis of Coupled Bunch Instabilities in BESSY-VSR 1659
 
  • M. Ruprecht, P. Goslawski, A. Jankowiak, M. Ries, A. Schälicke, G. Wüstefeld
    HZB, Berlin, Germany
  • T. Weis
    DELTA, Dortmund, Germany
 
  BESSY-VSR, a scheme where 1.5 ps and 15 ps long bunches (rms) can be stored simultaneously in the BESSY II storage ring has recently been proposed*. The strong longitudinal bunch focusing is achieved by superconducting high gradient RF cavities. This paper presents investigations of coupled bunch instabilities driven by HOMs of superconducting multi cell cavities in BESSY-VSR. Analytical calculations and tracking simulations in time domain are performed in the longitudinal and the transverse planes and factors that influence the threshold currents are being discussed. Suitable candidates of cavities which are presently available or in the phase of design are compared with respect to their instability thresholds.
* G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries, Simultaneous Long and Short Electron Bunches in the BESSY II Storage Ring, Proceedings of IPAC2011, San Sebastián, Spain
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI072 Status and Performance of Bunch-by-bunch Feedback at BESSY II and MLS 1733
 
  • A. Schälicke, P. Goslawski, M. Ries, M. Ruprecht
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung and Land Berlin.
Bunch-by-bunch feedback systems provide an important component in the reliable operation of electron storage rings. Modern digital bunch-by-bunch feedback systems allow efficient mitigation of multi-bunch instabilities, and at the same time offer valuable beam diagnostics. In this contribution, setup and performance of the bunch-by-bunch feedback systems at BESSY II and the MLS are presented. Longitudinal and transverse instabilities are studied under different machine conditions. The developed data analysis techniques and experimental measurements are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)