Author: Rakhno, I.L.
Paper Title Page
TUPRO028 Energy Deposition Studies for the Hi-Lumi LHC Inner Triplet Magnets 1078
 
  • N.V. Mokhov, I.L. Rakhno, S.I. Striganov, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
  • F. Cerutti, L.S. Esposito, A. Lechner
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy through the US LARP Program, and by the High Luminosity LHC project.
After operation at the nominal luminosity, the LHC is planned to be upgraded to a 5-fold increased luminosity of 5×1034 cm-2s−1. The upgrade includes replacement of the IP1/IP5 inner triplet 70-mm NbTi quadrupoles with the 150-mm coil aperture Nb3Sn quadrupoles along with the new 150-mm coil aperture NbTi dipole magnet. A detailed model of the region with these new magnets, field maps, corrector packages, segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS codes. Various aspects of the new design were studied: (i) thicknesses of tungsten absorbers; (ii) beam screen interruption in interconnects; (iii) crossing angle value and orientation, etc. In the optimized configuration, the peak power density averaged over the magnet inner cable width doesn’t exceed 2 mW/cm3, safely below the quench limit. For the integrated luminosity of 3000 fb-1, the highest peak dose of 35 MGy occurs in the corrector package CP, while for other magnets, the peak dose in the innermost insulators ranges from 20 to 30 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to be on a target 10 W/m level. FLUKA and MARS results agree within 10%.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)