Author: Pozimski, J.K.
Paper Title Page
TUPRO072 Lattice and Component Design for the Front End Test Stand MEBT at RAL 1205
 
  • M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • M.A. Clarke-Gayther, A.P. Letchford, D.C. Plostinar
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) linear accelerator at Rutherford Appleton laboratory (RAL) will accelerate a 60 mA, 2 ms, 50 pps H beam to 3MeV. The aim of FETS is to demonstrate perfect chopping using a novel 2 stage (fast / slow) chopper scheme. The beam chopper and associated beam dumps are located in the MEBT. Achieving a low emittance-growth under the influence of strong, non-linear space-charge forces in a lattice which has to accommodate the long chopping elements is challenging. The baseline FETS MEBT design is 4.3 m long and contains 7 quadrupoles, 3 rebunching cavities, a fast and slow chopper deflector and two beam dumps. In particle dynamics simulations using a distribution from an RFQ simulation as input, beam loss for the un-chopped beam is below 1% while the chopping efficiency is >99 % in both choppers. The final MEBT lattice chosen for FETS will be presented together with particle tracking results and design details of the beam line components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME073 Performance of the Low Energy Beam Transport at the RAL Front End Test Stand 3406
 
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL) is intended to demonstrate the early stages of acceleration (0-3 MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. A Low Energy Beam Transport (LEBT), consisting of three solenoids and four drift sections, is used to transport the H beam from the ion source to the Radio Frequency Quadrupole (RFQ). We present the current performance of the LEBT with regards to beam alignment, transmission and focusing into the acceptance of the RFQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME190 A Fibre Coupled, Low Power Laserwire Emittance Scanner at CERN LINAC4 3725
 
  • S.M. Gibson, G.E. Boorman, A. Bosco, K.O. Kruchinin
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • T. Hofmann, F. Roncarolo
    CERN, Geneva, Switzerland
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The new LINAC4 will accelerate H ions to 160 MeV and ultimately replace the existing 50 MeV LINAC2 in the injector chain for the LHC upgrade. During commissioning in 2013, a laserwire scanner and diamond strip detector were installed for non-invasive emittance measurements of the 3 MeV H beam. Synergy with the 3 MeV H Front End Test Stand at RAL, has stimulated collaborative development of a novel laserwire system. A low peak power (8kW) pulsed laser is fibre-coupled for remote installation and alignment free operation. Motorized focusing optics enable remote control of the thickness and position of the laserwire delivered to the vacuum chamber, in which the laser light neutralises a small fraction of H ions. Undeflected by a dipole magnet, these H atoms drift downstream, where their spatial profile is recorded by a highly sensitive diamond strip detector with ns-time resolution. We present first tests of the laserwire emittance scanner, including measurements of the photo detachment signal with respect to the background from residual gas interactions. The first laserwire transverse beam profile and emittance measurements are compared with conventional slit-grid diagnostics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME190  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME191 Simulation Results of the FETS Laserwire Emittance Scanner 3729
 
  • K.O. Kruchinin, A. Bosco, S.M. Gibson, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • D.C. Faircloth
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Front End Test Stand (FETS) at Rutherford Appleton Laboratory (RAL) has been developed to demonstrate a high current (60 mA) H beam with the energy of 3 MeV that will be required for future proton drivers. At such high power beam machine a non-invasive diagnostics is required. To measure the emittance of the ion beam a laserwire scanner is being developed. A high power laser will scan across the H ion beam. The H particles will be neutralized via a photo-detachment process producing a stream of fast neutral hydrogen atoms bearing information about the phase space distribution of the initial H beam. To design an effective detection system and optimize its parameters a simulation of the processes at the interaction point is required. We present recent simulation results of theц FETS laserwire system. Simulations were performed using measured data of the laser propagation and ion beam distribution, obtained with General Particle Tracer code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME191  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI058 RF Delivery System for FETS 3902
 
  • S.M.H. Alsari, M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • M. Dudman, A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) is an experiment based at the Rutherford Appleton Laboratory (RAL) in the UK. In this experiment, the first stages necessary to produce a very high quality, chopped H ion beam as required for the next generation of high power proton accelerators (HPPAs) are designed, built and tested. HPPAs with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, accelerator driven sub-critical systems, waste transmuters and tritium production facilities. An RF system outline, circulator high power tests, RF amplifiers tests, waveguide run with shielding and couplers design are presented and discussed in this paper. Experimental measurements of the system’s circulator and RF Amplifiers high power test will be presented as part of the system testing results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)