Author: Polozov, S.M.
Paper Title Page
WEPRO067 Development of NICA Injection Complex 2103
 
  • A.V. Butenko, E.E. Donets, A.D. Kovalenko, K.A. Levterov, A.O. Sidorin, G.V. Trubnikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • A. Belov
    RAS/INR, Moscow, Russia
  • E.D. Donets, V.V. Fimushkin, A. Govorov, V. Kobets, V. Monchinsky
    JINR, Dubna, Moscow Region, Russia
  • H. Höltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH, Frankfurt, Germany
  • T. Kulevoy, D.A. Liakin
    ITEP, Moscow, Russia
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is assumed to operate using two linear accelerators: the Alvarez-type linac LU-20 as injector for light ions, polarized protons and deuterons and a new linac HILac for heavy ions. The new Booster and existing Nuclotron superconducting rings are the main parts of the injection complex of the NICA collider. The status of ion sources, both linacs and rings is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO096 X-ray Radiation Source for Low Dose Angiography based on Channeling Radiation 2186
 
  • S.M. Polozov, T.V. Bondarenko
    MEPhI, Moscow, Russia
 
  Angiography is one of the most reliable and contemporary procedure of the vascular system imaging. X-ray spectrums provided by all modern medical angiographs are too broad to acquire high contrast images and provide low radiation dose at the same time. The new method of narrow X-ray spectrum achieving is based on the idea of channelling radiation application. The X-ray filters used in this method allows eliminating the high energy part of the spectrum and providing dramatic dose reduction. The scheme of the facility including the X-ray filter is discussed. The results of the spectrum analysis for the channelling radiation source and typical angiography X-ray tube are discussed. Doses obtained by the water phantom and contrast of the iodine agent image are also provided for both cases.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO097 The Base Parameters of the Compact 27 GHz Electron Linac for Medical Application 2189
 
  • S.M. Polozov, T.V. Bondarenko, Yu.D. Kliuchevskaia, V.I. Rashchikov
    MEPhI, Moscow, Russia
 
  A compact and light-weight electron linac is attractive for a number of medical applications including intra-operational and cyber-knife systems. The design of such an accelerator can nowadays be based on using of a powerful high-voltage high-frequency gyrotron which can provide now in pulsed regime a peak power up to 15 MW at the frequency about of 30 GHz. Taking into account this possibility, the paper presents the results of design and numerical simulations for the electron beam dynamics in a linac with the operating frequency of 27 GHz. Designed linac consists of two parts: gentle buncher and main accelerating section. The beam bunching is complicated at 1 cm wavelength because high energy about 2 MeV is necessary for beam injection into the main stage with v/c=1. Beam dynamics simulations are held using BEAMDULAC-BL code*. The electrodynamics of accelerating structure based on biperiodic structure is presented. The electron gun simulation is also discussed. The RF feeding is planned to be realized using a gyrotron to be designed in IAP RAS. The gyrotron is capable to produce 2 MW peak RF power in pulses with pulse duration 400 μs and repetition rate 10 Hz.
T.V. Bondarenko, E.S. Masunov, S.M. Polozov. BEAMDULAC-BL code for 3D simulation of electron beam dynamics taking into account beam loading and coulomb field. PAST, 2014 (in press).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME030 Beam Dynamics and Accelerating Cavity Electrodynamics' Simulation of CW 2 MeV Proton RFQ 3286
 
  • S.M. Polozov, A.E. Aksentyev, T. Kulevoy
    MEPhI, Moscow, Russia
 
  The CW proton linac has a number of important applications; serving as the initial part of a high-energy, high-power linac for an accelerator-driven system is the main of them. Its CW operation mode and a 5-10 mA beam current, however, are limiting factors for the accelerating field. The surface field should not exceed the Kilpatrick field by more than 1.2-1.5 times. This limitation leads to the increase in linac length and beam bunching complexity. The first results of a 2 MeV, 5 mA, CW RFQ, designed for the operating frequency of 162 MHz, are discussed. Beam dynamics simulation results, obtained by using the BEAMDULAC-RFQ code*, are presented. The electrodynamics of the accelerating structure based on the four-vane cavity is discussed. The accelerating cavity design uses coupling windows as was proposed earlier **, but with windows of an elliptical form. Such form allows for better separation of quarupole and dipole modes.
* S.M. Polozov. Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations, 3 (79), 2012, p. 131-136.
** V.A. Andreev. Patent US5483130, 1996.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME031 Beam Dynamics Simulation in SC Linac for the Proton Radiotherapy 3289
 
  • S.M. Polozov, I.A. Ashanin, A.V. Samoshin
    MEPhI, Moscow, Russia
 
  Superconducting linear accelerators based on short independently phased SC cavities are widely used today in ADS and FRIB. Such accelerator can be useful as proton therapy beam source*. The accelerator general layout to accelerate proton beam at the energy range 2-240 MeV will detail in this report. Obviously, in this linac will always violate the principle of synchronicity when the synchronous particle velocity is equal to the phase velocity of the accelerating wave and a slipping of particles relative to the accelerating wave. The beam dynamics simulation shows that linac should consist of four groups of identical cavities. Cavities should have phase velocities as βg=0.1, 0.18, 0.3 and 0.49 respectively. The choice of optimum parameters of accelerating cavities and focusing magnets will discussed and the beam dynamics simulation results will presented.
*S.M. Polozov, A.V. Samoshin. Proc. of LINAC’12, pp. 633-635
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)