Author: Petrenko, A.V.
Paper Title Page
MOPRI005 The AWAKE Experimental Facility at CERN 582
 
  • E. Gschwendtner, T. Bohl, C. Bracco, A.C. Butterworth, S. Cipiccia, S. Döbert, V. Fedosseev, E. Feldbaumer, C. Heßler, W. Höfle, M. Martyanov, M. Meddahi, J.A. Osborne, A. Pardons, A.V. Petrenko, H. Vincke
    CERN, Geneva, Switzerland
 
  AWAKE, an Advanced Wakefield Experiment is launched at CERN to verify the proton driven plasma wakefield acceleration concept. Proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent along a 750m long proton line to the plasma cell, a Rubidium vapour source, where the proton beam drives wakefields reaching accelerating gradients at the order of gigavolt per meter. A high power laser pulse will co-propagate within the proton bunch creating the plasma by ionizing the (initially) neutral gas. An electron beam will be injected into the plasma cell to probe the accelerating wakefield. The AWAKE experiment will be installed in the CNGS facility. First proton beam to the plasma cell is expected by end 2016. The design of the experimental area and the integration of the new beam-lines as well as the experimental equipment will be shown. The needed modifications of the infrastructure in the facility will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME077 The Challenge of Interfacing the Primary Beam Lines for the AWAKE Project at CERN 1534
 
  • C. Bracco, B. Goddard, E. Gschwendtner, M. Meddahi, A.V. Petrenko
    CERN, Geneva, Switzerland
  • P. Muggli
    MPI, Muenchen, Germany
  • F.M. Velotti
    EPFL, Lausanne, Switzerland
 
  The Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN foresees the simultaneous operation of a proton, a laser and an electron beam. The first stage of the experiment will consist in proving the self-modulation, in the plasma, of a long proton bunch into micro-bunches. The success of this experiment requires an almost perfect concentricity of the proton and laser beams, over the full length of the plasma cell. The complexity of integrating the laser into the proton beam line and fulfilling the strict requirements in terms of pointing precision of the proton beam at the plasma cell are described. The second stage of the experiment foresees also the injection of electron bunches to probe the accelerating wakefields driven by the proton beam. Studies were performed to evaluate the possibility of injecting the electron beam parallel and with an offset to the proton beam axis. This option would imply that protons and electrons will have to share the last few meters of a common beam line. Issues and possible solutions for this case are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME078 Electron Injection Studies for the AWAKE Experiment at CERN 1537
 
  • A.V. Petrenko, C. Bracco, E. Gschwendtner
    CERN, Geneva, Switzerland
  • K.V. Lotov
    NSU, Novosibirsk, Russia
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • P. Muggli
    MPI, Muenchen, Germany
 
  The AWAKE experiment recently approved at CERN will use the self-modulation instability (SMI) of long (12 cm), relativistic (400 GeV/c) proton bunches in dense plasmas to drive wakefields with accelerating gradients at the GV/m level. These accelerating gradients will be probed by externally injected electrons. In order to preserve the plasma uniformity required for the SMI the first experiments will use on-axis injection of a low energy 10-20 MeV electron beam collinearly with the proton beam. In this article we describe the physics of electron injection into the proton driven SMI wakefields. Requirements on the injected electron beam are determined and the final accelerated beam parameters are obtained via numerical simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)