Author: Peterson, D.P.
Paper Title Page
TUPRI035 Measurement of Beam Size in Intrabeam Scattering Dominated Beams at Various Energies at CesrTA 1635
 
  • M. P. Ehrlichman, K.J. Blaser, A. Chatterjee, W. Hartung, B.K. Heltsley, D.P. Peterson, D. L. Rubin, D. Sagan, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This research was supported by NSF and DOE contracts PHY-0734867, PHY-1002467, PHYS-1068662, DE-FC02-08ER41538, DE-SC0006505.
Recent reports from CesrTA have shown measurement and calculation of beam size versus current in CesrTA beams at 2.1 GeV. Here, the effect of changing the energy of IBS-dominated beams is reported. IBS growth rates have roughly a γ-3 dependence. Measurements at 1.8, 2.1, 2.3, and 2.5 GeV are shown and compared with predictions from IBS theory.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME196 Low Energy Coded Aperture Performance at the CesrTA x-Ray Beam Size Monitor 3741
 
  • D.P. Peterson, J.P. Alexander, A. Chatterjee, M. P. Ehrlichman, B.K. Heltsley, A. Lyndaker, N.T. Rider, D. L. Rubin, R.D. Seeley, J.P. Shanks
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.W. Flanagan
    KEK, Ibaraki, Japan
 
  Funding: U.S. National Science Foundation PHY-0734867, PHY-1002467, PHYS-1068662, U.S. Department of Energy DE-FC02-08ER41538, DE-SC0006505
We report on the design and performance of coded aperture optics elements in the CesrTA x-ray beam size monitor (xBSM). Resolution must be sufficient to allow single-turn measurements of vertical beam sizes of order 10um by imaging synchrotron radiation photons onto a one-dimensional photodiode array. Measurements with beam energies above 2.1GeV and current above 0.1mA can be performed with a single-slit (pinhole) optic. At lower energy or current, small beam size measurements are limited by the diffractive width of a pinhole image and counting statistics. A coded aperture is a multi-slit mask that can improve on the resolution of a pinhole in two ways: higher average transparency improves counting statistics; and the slit pattern and masking transparency can be designed to obtain a diffractive image with narrower features. We have previously implemented coded apertures that are uniform redundant arrays (URA). A new coded aperture design is optimized for imaging with 1.8 GeV beam energy (1.9keV average x-ray energy) and with beam sizes below 20um. Resolution measurements were made in December 2013. Performance of the new coded aperture is compared to the pinhole and the URA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME196  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)