Author: Pellico, W.
Paper Title Page
WEPRO069 Development of Cogging at the Fermilab Booster 2109
 
  • K. Seiya, S. Chaurize, C.C. Drennan, W. Pellico, A.K. Triplett, A.M. Waller
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25·1017 protons/hour which is almost double the present flux, 1.4·1017 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME075 FNAL - The Proton Improvement Plan (PIP) 3409
 
  • W. Pellico, K.A. Domann, F.G. Garcia, K. E. Gollwitzer, K. Seiya, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  Funding: The United States Department of Energy
The FNAL Proton Source is currently undergoing a major improvement effort. A plan has been developed and is underway to increase Proton Source throughput while maintaining good availability and acceptable residual activation. The plan addresses hardware modifications to increase repetition rate and improve beam loss while ensuring viable operation of the proton source through 2025. The PIP goals will enable Linac/Booster to: Deliver 2.25·1017 protons per hour with a 15 HZ cycle rate Availability greater than 85% Maintain residual activation at acceptable levels. The work has been progressing on schedule and is expected to finished by 2018.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI061 Perpendicular Biased Ferrite Tuned Cavities for the Fermilab Booster 3911
 
  • G.V. Romanov, M.H. Awida, T.N. Khabiboulline, W. Pellico, C.-Y. Tan, I. Terechkine, V.P. Yakovlev, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  The aging Fermilab Booster RF system needs an upgrade to support future experimental program. The important feature of the upgrade is substantial enhancement of the requirements for the accelerating cavities. The new requirements include enlargement of the cavity beam pipe aperture, increase of the cavity voltage and increase in the repetition rate. The modification of the present traditional parallel biased ferrite cavities is rather challenging. An alternative to rebuilding the present Fermilab Booster RF cavities is to design and construct new perpendicular biased RF cavities, which potentially offer a number of advantages. An evaluation and a preliminary design of the perpendicular biased ferrite tuned cavities for the Fermilab Booster upgrade is described in the paper. Also it is desirable for better Booster performance to improve the capture of beam in the Booster during injection and at the start of the ramp. One possible way to do that is to flatten the bucket by introducing second harmonic cavities into the Booster. This paper also looks into the option of using perpendicularly biased ferrite tuners for the second harmonic cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)