Author: Passarelli, A.
Paper Title Page
TUPRI054 FEM Analysis of Beam-coupling Impedance and RF Contacts Criticality on the LHC UA9 Piezo Goniometer 1692
 
  • A. Danisi, R. Losito, A. Masi, A. Passarelli, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
 
  The UA9 piezo-goniometer has been designed to guarantee micro-radians-accuracy angular positioning of a silicon crystal for a crystal collimation experiment in the LHC, and to minimize the impact on the LHC beam-coupling impedance. This paper presents a Finite Element Method (FEM) study of the device, in both parking and operational positions, to evaluate its impact on the LHC impedance budget. The study has been a progressive simulation work, started from the simplification of the original detailed design, and aimed at highlighting the effect of single details (e.g. objects in confining chambers) on the longitudinal and transverse components of beam-coupling impedance. In addition, the shielding contribution of the RF gaskets has been carefully evaluated, with the objective to assess the consequences for operation in case of their failure. Sensitivity analyses to simulation parameters are also performed, in order to test the FEM model robustness. A final word is drawn on the overall device impedance criticality.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)