Author: Papaphilippou, Y.
Paper Title Page
MOPRI109 High-Power Proton-Synchrotron Collimation Studies 879
 
  • A. Alekou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • D. Spitzbart
    TU Vienna, Wien, Austria
 
  The High-Power Proton-Synchrotron (HP-PS) will be delivering a 2 MW proton beam to a fixed target in order to produce neutrinos within the LAGUNA-LBNO project. A mechanical collimation system is essential to prevent lost particles from hitting the super-feric dipoles of the HP-PS ring and to also limit the equipment irradiation close to the beam. This paper presents how the efficiency of the HP-PS collimator system is optimised with respect to the change of the collimators’ thickness, material and beam halo size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRO010 Origins of Transverse Emittance Blow-up during the LHC Energy Ramp 1021
SUSPSNE003   use link to see paper's listing under its alternate paper code  
 
  • M. Kuhn, G. Arduini, V. Kain, A. Langner, Y. Papaphilippou, M. Schaumann, R. Tomás
    CERN, Geneva, Switzerland
 
  During LHC Run 1 about 30 % of the potential peak performance was lost due to transverse emittance blow-up through the LHC cycle. Measurements indicated that the majority of the blow-up occurred during the energy ramp. Until the end of LHC Run 1 this emittance blow-up could not be eliminated. In this paper the measurements and observations of emittance growth through the ramp are summarized. Simulation results for growth due to Intra Beam Scattering will be shown and compared to measurements. A summary of investigations of other possible sources will be given and backed up with simulations where possible. Requirements for commissioning the LHC with beam in 2015 after Long Shutdown 1 to understand and control emittance blow-up will be listed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRO010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME025 Progress on Low Emittance Tuning for the CLIC Damping Rings 1404
 
  • J. Alabau-Gonzalvo, H. Bartosik, Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pm·rad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME026 TMCI Thresholds for LHC Single Bunches in the CERN-SPS and Comparison with Simulations 1407
 
  • H. Bartosik, G. Iadarola, Y. Papaphilippou, G. Rumolo, B. Salvant, C. Zannini
    CERN, Geneva, Switzerland
 
  At the beginning of 2013 an extensive measurement campaign was carried out at the SPS in order to determine the Transverse Mode Coupling Instability thresholds of LHC-type bunches in a wide range of intensities and longitudinal emittances. The measurements were performed in two different configurations of machine optics (nominal and low gamma transition) with the goal to characterize the differences in behavior and performance. The purpose of this paper is to describe in detail the measurement procedure and results, as well as the comparison of the experimental data with HEADTAIL simulations based on the latest SPS impedance model. Beside the impedances of the resistive wall, the beam position monitors (BPMs), the RF cavities, and the flanges, an advanced model of the impedance of the kicker magnets is included, which are found to play a major role in the definition of the stability region of the LHC-type bunches in the two optics configurations studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRO068 SPS Beam Steering for LHC Extraction 2106
 
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • H. Bartosik, K. Cornelis, L.N. Drøsdal, B. Goddard, V. Kain, M. Meddahi, Y. Papaphilippou, J. Wenninger
    CERN, Geneva, Switzerland
 
  The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO076 Frequency Maps Analysis of Tracking and Experimental Data for the SLS Storage Ring 3056
 
  • P. Zisopoulos, F. Antoniou, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • A. Streun
    PSI, Villigen PSI, Switzerland
  • V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Frequency Maps Analysis (FMA) has been widely used in beam dynamics in order to study dynamical aspects of the particles linear and non-linear motion, such as optics functions distortion, coupling, tune-shift and resonances. In this paper, FMA is employed to explore the dynamics of models of the Swiss Light Source (SLS) storage ring and compare them with measured turn by turn (TxT) position data. In particular, a method is proposed for estimating the momentum spread using synchrotron sidebands of the Fourier spectrum of the TxT data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME068 Optics Design of the High-power Proton Synchrotron for LAGUNA-LBNO 3391
 
  • Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, I. Efthymiopoulos, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Funding: Work supported by EC/FP7 grant 284518
The prospects for future high-power proton beams for producing neutrinos at CERN within the LAGUNA-LBNO study, include the design of a 2 MW High-Power Pro- ton Synchrotron (HP-PS). In this paper, the optics design of the ring is reviewed, comprising Negative Momentum Compaction (NMC) arc cells and quadrupole triplet long straight sections, flexible enough to achieve the constraints imposed mainly by different beam transfer equipment and processes. A global tunability study is undertaken includ- ing aperture and magnet parameter considerations. Basic correction systems are specified and their impact to beam dynamics including dynamic aperture is finally evaluated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)