Author: Palmer, R.B.
Paper Title Page
MOPRI007 Design and Simulation of a High Intensity Muon Beam Production for Neutrino Experiments. 589
 
  • H. K. Sayed, H.G. Kirk, R.B. Palmer, D. Stratakis
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  The production process of pions which then decay into muons, yields a muon beam with large transverse and longitudinal emittances. Such beam requires phase space manipulation to reduce the total 6D emittance before it could go through any acceleration stage. The design of the muon beam manipulation is based on Neutrino Factory front end design. In this study we report on a multi objective - multivariable global optimization of the front end using parallel genetic algorithm. The parallel optimization algorithm and the optimization strategy will be discussed and the optimized results will be presented as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME019 Design and Simulation of a High Field - low energy Muon Ionization Cooling Channel 1386
 
  • H. K. Sayed, J.S. Berg, R.B. Palmer, D. Stratakis
    BNL, Upton, Long Island, New York, USA
 
  Muon beams are generated with inherited large transverse and longitudinal emittances. In order to achieve low emittance within the short lifetime of the muons, the only feasible cooling scheme is the ionization cooling. In this study we present a design and simulation of a novel ionization cooling channel. The channel operates at a very strong magnetic fields of 25-30 T with low muon beam energy starting from 66 MeV and decreasing gradually. We study the beam dynamics of such low energy beam in high field region inside and between cooling stages. Key design parameters will be presented and in addition the performance and channel requirements of RF cavities and high field magnets will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPME020 Complete Six-dimensional Muon Cooling Channel for a Muon Collider 1389
 
  • D. Stratakis, J.S. Berg, R.B. Palmer, H. Witte
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We describe a complete 6D rectilinear cooling scheme for use in a Muon Collider. This scheme uses separate 6D cooling channels for the two signs of particle charge. In each, a channel first reduces the emittance of a train of 21 muon bunches until it becomes possible to merge them into a single bunch, one of each sign. The single bunches are then sent through a second rectilinear channel for further cooling towards the requirements of a Muon Collider. We adopt this approach for a new cooling lattice design for the Muon Collider, and for the first time present a end-to-end simulation. We review key parameters such as the required focusing fields, absorber lengths, cavity frequencies and rf gradients.
*D. Stratakis et al., Phys. Rev. ST AB 16, 091001 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPME020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZA02 A Staged Muon Accelerator Facility for Neutrino and Collider Physics 1872
 
  • J.-P. Delahaye
    SLAC, Menlo Park, California, USA
  • C.M. Ankenbrandt, S. Brice, A.D. Bross, D.S. Denisov, E. Eichten, S.D. Holmes, R.J. Lipton, D.V. Neuffer, M.A. Palmer
    Fermilab, Batavia, Illinois, USA
  • S.A. Bogacz
    JLab, Newport News, Virginia, USA
  • P. Huber
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • D.M. Kaplan, P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
  • H.G. Kirk, R.B. Palmer
    BNL, Upton, Long Island, New York, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Dept. of Energy under contracts DE-AC02-07CH11359 and DE-AC02-76SF00515
Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.
 
slides icon Slides WEZA02 [27.263 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEZA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI103 Magnet Design for a Six-dimensional Rectilinear Cooling Channel - Feasibility Study 2740
 
  • H. Witte, J.S. Berg, R.B. Palmer, D. Stratakis
    BNL, Upton, Long Island, New York, USA
  • F. Borgnolutti
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An essential part of a potential future muon collider is ionization cooling, which is required to reduce the emittance of the muon beam. A new scheme has recently been proposed which in simulations shows an improved performance in terms of cooling efficiency and transmitted muons. The lattice of this cooling channel consists of 12 stages, each of which requires different superconducting solenoids. The most challenging stage is the last one, where the solenoids are expected to deliver 15.1T in a bore of ~4.5 cm. This paper discusses the feasibility of the solenoids for the last stage of this lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)