Author: Osswald, F.R.
Paper Title Page
MOPRI001 Induced Heating Power Evaluation in RIB Transfer Line of SPIRAL2 570
 
  • N.Yu. Kazarinov
    JINR, Dubna, Moscow Region, Russia
  • D. Boutin, F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
 
  Radioactive Ion Beams of SPIRAL2 project will be produced in the ECR ion source using the Helium as supporting gas. RIB transported in the transfer lines have a multi-component structure and total current of the beams is defined by Helium ions. The total power of Helium component may reach 300 W. The focusing force acting on the ions in the transfer beam line is strongly dependent on mass-to-charge ratio (this is valid for magnetic optical elements). For this reason supporting gas ions will be lost at initial part of the beam line between ECR ion source and analyzing magnet. The Helium beam losses and induced heating power density at the wall of vacuum tube in RIB transfer line of SPIRAL2 during transportation of Ar, Xe and U ion beam are evaluated in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI001 ESSnuSB: A New Facility Concept for the Production of Very Intense Neutrino Beams in Europe 1550
 
  • E. Bouquerel, E. Baussan, M. Dracos, F.R. Osswald, P. Poussot, N. Vassilopoulos
    IPHC, Strasbourg Cedex 2, France
 
  A new project for the production of a very intense neutrino beam has arisen to enable the discovery of leptonic CP violation and neutrino mass hierarchy. This facility will use the proton linac of the European Spallation Source (ESS) in Lund to deliver the neutrino super beam. The ESS linac is expected to be fully operational at 5 MW power by 2022, producing 2 GeV and 2.86 ms long proton pulses at a rate of 14 Hz. An upgrade of the power to 10 MW and a frequency of 28 Hz, in which half is for the neutron beam, is necessary for the production of the neutrino beam. The primary proton beam-line completing the linac will consist of switchyards and accumulator rings. The secondary beam-line producing neutrinos will consist of a four-horn/target station, decay tunnel and beam dump. A megaton scale water Cherenkov detector will be located at a baseline of about 500 km in one of the existing mines in Sweden and it will measure the neutrino oscillations. The elements of the primary and secondary beam-lines and all the possible scenarios impacting the design of the ESSnuSB facility as well as the safety issues due to the high irradiation produced are presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME080 Optimization of Quadripolar Field Production for Electrostatic Ion Beam Focusing 2468
 
  • F.R. Osswald, E. Bouquerel, D. Boutin
    IPHC, Strasbourg Cedex 2, France
  • W. Beeckman, J.L. Lancelot
    Sigmaphi, Vannes, France
 
  Recent calculations concerning the shape of the quadrupole used as a focusing lens revealed a potential progress margin especially for short devices*. The main issues of the paper are related with the improvement of the performances of some standard quadrupolar focusing equipments considered here with an electrostatic technology i.e. the influence on the beam transmission, aberrations limitation, and reduction of beam losses. The joint research and development programme between a laboratory and the industry are expected to enable technology transfer, design optimization and cost reduction.
* Quadrupole shapes, R. Baartman, PRST-AB 15, 074002 (2012)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)