Author: Osmic, F.     [Osmić, F.]
Paper Title Page
WEPRO081 Status of MedAustron – The Austrian Ion Therapy and Research Centre 2146
 
  • F. Osmić, A. Koschik, P. Urschütz
    EBG MedAustron, Wr. Neustadt, Austria
  • M. Benedikt
    CERN, Geneva, Switzerland
 
  MedAustron is the Austrian centre for hadron therapy and non-clinical research. The accelerator design is based on the PIMMS study * and features proton beams of up to 800 MeV and carbon ion beams of up to 400 MeV/n. The accelerator is currently being installed and the beam commissioning has started early 2013. The injector comprising three ECR sources, an RFQ and an IH-mode structure has already been qualified; the synchrotron commissioning shall start in March 2014. Certification of the therapy accelerator following the European Medical Device Directive (MDD) is well under way with strong partners from industry involved in the process. The status of the overall facility including an overview of the recent commissioning results will be presented in this paper.
* P. J. Bryant et al., “Proton-Ion Medical Machine Study (PIMMS), 2,” Aug 2000.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRO081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME001 Commissioning and Operation of the MedAustron Injector: Results and Future Outlook 3202
 
  • L.C. Penescu, M. Kronberger, T. Kulenkampff, F. Osmić, P. Urschütz
    EBG MedAustron, Wr. Neustadt, Austria
  • W. Pirkl
    CERN, Geneva, Switzerland
 
  The MedAustron facility is a synchrotron-driven hadron therapy and research center presently under construction in Wiener Neustadt, Austria. In its final outline, the facility will provide H+ beams with kinetic energies ≤250MeV and C6+ beams of ≤400MeV/u for clinical applications, and for non-clinical applications H+ of up to 800MeV. First patient treatment is foreseen for the end of 2015. The (H3)+ and C4+ beams are generated at 8keV/u in continuous mode by three ECR ion sources and transported to the RFQ for acceleration to 400keV/u. An inter-tank section matches the beam to the entrance of an IH-mode DTL that accelerates the particles to 7MeV/u before they are stripped to, respectively, H+ and C6+, debunched and transported to the injection plane of the synchrotron. At a later stage of the project, beams of other species can be generated with similar optics. This contribution presents the results of the injector commissioning and operation. A comparison with the baseline optics and with the design error studies is given. In addition, an overview on the operational experience is given, with emphasis on the system reliability, stability and reproducibility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME161 Integration of Beam Diagnostics Devices for a Therapy Accelerator 3641
 
  • S. Tuma, J. Dedič, M. Klun, L. Šepetavc
    Cosylab, Ljubljana, Slovenia
  • A. Kerschbaum, F. Osmić, M. Repovž, J. Sanchez Arias
    EBG MedAustron, Wr. Neustadt, Austria
 
  MedAustron is a synchrotron based accelerator complex, used for cancer treatment as well as for non-clinical research, and is situated in Wiener Neustadt, Austria. Cosylab has been working closely with MedAustron to develop the core accelerator control system and is now also working on on-site integration of beam diagnostics (BD) devices. These devices are critical for commissioning of the accelerator as well as later during regular operation to ensure high up-time of the machine. Beam instrumentation devices are fully integrated into the Front End Controller Operating System (FECOS) of the accelerator. FECOS is a custom designed control system framework implemented in LabVIEW, which provides unified interfaces and core services to all software components in the system. The Master Timing System component provides configurable real-time events distribution (triggers), essential for measurement and control in sections where the beam is bunched and device actions need to be synchronized. Both companies, MedAustron and Cosylab also developed user interfaces that are designed to be intuitive, while maintaining a level of flexibility for physics research.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME161  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)