Author: Okano, Y.
Paper Title Page
MOPRI034 Development of temporal response measurement system for transmission-type spin-polarized photocathodes 670
 
  • T. Inagaki, M. Hosaka, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya, Japan
  • M. Adachi
    KEK, Ibaraki, Japan
  • X.G. Jin
    Institute for Advanced Research, Nagoya, Japan
  • M. Katoh, T. Konomi
    UVSOR, Okazaki, Japan
  • Y. Okano
    IMS, Okazaki, Japan
 
  Spin polarized electron beam is essential for "International Linear Collider". In Nagoya University, transmission-type spin-polarized photocathodes have been developed, and the quantum efficiency of 0.5 % and the polarization of 90 % were achieved*,**. Recently, we succeeded in making the active layer several times thicker with keeping the spin polarization on the GaAs/GaAsP strain-compensated superlattice photocathode***. Increasing the thickness of the active layer is very advantageous for high quantum efficiency, but might be disadvantageous for pulse response. In order to investigate the pulse response, we have developed a pulse length measurement system by using an RF deflecting cavity. In the measurement, magnetic field induced on the beam axis kicks electron pulse transversely and the pulse length is projected to the transverse plane, which is measured by knife-edge method. The pump laser pulses are provided by a Ti:sapphire laser oscillator. By using a pulse stretcher, the pulse width of the pump laser can be changed in the range between 130 fs and 20 ps. In the poster session, we will describe the details of the measurement system and the most recent experimental results.
* T. Nakanishi, The XXI International LINAC Conference(1998)
** Xiuguang Jin, Japanese Journal of Applied Physics 51 (2012) 108004
*** Xiuguang Jin, Applied Physics Express 6 (2013) 015801
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRI035 Development of the Photocathode LiTi2O4 and Evaluations of the Initial Emittance 673
 
  • R. Inagaki, M. Hosaka, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya, Japan
  • T. Hitosugi, S. Shiraki
    Tohoku Uneversity, WPI-AIMR, Sendai, Japan
  • E. Kako, Y. Kobayashi, S. Yamaguchi
    KEK, Ibaraki, Japan
  • M. Katoh, T. Konomi, T. Tokushi
    UVSOR, Okazaki, Japan
  • Y. Okano
    IMS, Okazaki, Japan
 
  In UVSOR, the X-ray free electron laser (XFEL) based on linear accelerator with high pulse repetition about 1MHz has been designed as a candidate for the next radiation sources. We thought a combination of superconducting RF cavity and photocathode is an optimal electron gun for the new accelerator. For this electron gun, we propose a back-illuminated multi-alkali* photocathode with transparent superconductor LiTi2O4**. The reason for using LiTi2O4 is to reflect RF by using feature of penetration depth of superconductor, which is defined from London equation. This feature protects optical components from RF damage. However, LiTi2O4 is a new material and properties are not clear. We have measured the basic properties of this photocathode, such as magnetic susceptibility measurement and photoelectron spectrometry, etc. In this conference, we will explain the detail of the concept and advantage of this cathode, and show the result measured about the basic properties of this photocathode focusing on the initial emittance measurement.
* A. V. Lyashenko et al. JINST 4 P07005 (2009)
** Kumatani et al. APL 101 (2012) 123103″
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)